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ABSTRACT 

 

 

 

STOCHASTIC SPATIO-TEMPORAL UNCERTAINTY IN  

GIS-BASED WATER QUALITY MODELING  

OF THE LAND WATER INTERFACE 

 

 

 

Ahmad M. Salah 

Department of Civil and Environmental Engineering 

Doctor of Philosophy 

 

 

 

Integrated water resources management has been used for decades in various 

formats. The limited resources and the ever growing population keep imposing pressure 

on decision makers to better-, and reliably, manage the available waters. On the other 

hand, the continuous development in computing and modeling power has helped 

modelers and decision makers considerably. To use these models, assumptions have to be 

made to fill in the gaps of missing data and to approximate the current conditions. The 

type and amount of information available can also be used to help select the best model 

from the currently available models. Advances in data collection have not kept up to the 

pace of advances in model development and the need for more and reliable input 

parameter values.  Hence, uncertainty in model input parameters also needs to be 

quantified and addressed. 
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This research effort develops a spatially-based modeling framework to model 

watersheds from both water quantity and quality standpoints. In this research, Gridded 

Surface Sub-Surface Hydrologic Analysis (GSSHA) and CE-QUAL-W2 models are 

linked within the Watershed Modeling System (WMS); a GIS interface for hydrologic 

and hydraulic models, to better handle both models pre and post processing. In addition, 

stochastic analysis routines are developed and used to examine and address the 

uncertainty inherent in the modeling process of the interface between land and water in 

the designated watershed.  

The linkage routines are developed in WMS using C++. The two models are 

linked spatially and temporally with the general direction of data flow from GSSHA to 

CE-QUAL-W2. Pre-processing of the CE-QUAL-W2 model is performed first. Then 

stochastic parameters and their associated distributions are defined for stochastic analysis 

in GSSHA before a batch run is performed. GSSHA output is then aggregated by CE-

QUAL-W2 segments to generate multiple CE-QUAL-W2 runs. WMS then reads the 

stochastic CE-QUAL-W2 runs upon successful completion for data analysis. Modelers 

need to generate a WMS Gage for each location where they want to examine the 

stochastic output. A Gage is defined by a segment and a layer in the CE-QUAl-W2 

model. Once defined, modelers are able to view a computed credible interval with lower, 

upper bounds in addition to the mean time series of a pre-selected constituent.  

Decision makers can utilize this output to better manage watersheds by 

understanding and incorporating the spatio-temporal uncertainty for the land-water 

interface.  
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1 Introduction 

Water quality is a fundamental component in today’s holistic approach to water 

resources management. Water scarcity is a worldwide crisis even though 29% of the total 

planet surface is covered with water (Figure  1-1). Only 3% of this water is considered 

“fresh”, of which only 0.3% is available in rivers/lakes (Figure  1-2) (WWC, 2007). The 

primary reason that 97% of the planet water is not available for human use is its 

unsuitability from a water quality perspective (WHO, 2004). Thus, even though there 

might be an abundance of water, it is not readily available for human uses and water 

quality becomes crucial.  

In brief, the water shortage crisis has five main causes (WHO/UNICEF, 2005) & 

(Shiklomanov, 1999): 

1. Shortage of the resources (3% of fresh water). 

2. Drastic population growth which exerts a continuously increasing demand.  

3. Imbalanced distribution of water shares where water-rich regions have high 

per capita water shares (low population relative to high, readily-available 

water resources) and water-poor regions have low water shares (high 

population relative to low, readily-available water resources). 

4. Industrialization and urbanization constituting increased pollution potential. 
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5. Regional water use 

irrigation may not be suitable for do

may not be used as process water

Figure  1-1:  Percentage of 

One of the earliest proposed solution

and was referenced by the common phrase: 

concept worked with low population densities. But, with the current requirements and 

regulations, it might not appear to be

valid criterion, as the question is 

all polluted regions in the world.

if the available water is “good enough” for dilut

Sufficient and reliable water quantity/quality data are necessary for any 

comprehensive water resources management project. However, insufficient data has 

always been an issue in pursuing successful water quantity/quality simulations 

(Karamouz, et al., 2003). Nevertheless, decisions still need to be made based on the best 

available technologies and information at the time of decision making.

2 

 imbalances. For example, water that is suitable for 

irrigation may not be suitable for domestic use, or industrial cooling water 

as process water. 

 

 

:  Percentage of Land/Water Coverage of Earth. 

One of the earliest proposed solutions to the water quality problem was 

and was referenced by the common phrase: “The Solution to Pollution is Dilution”. 

concept worked with low population densities. But, with the current requirements and 

to be a technical resolution; in fact, it might not 

is if there is enough fresh water to dilute polluted water

. Moreover, adequate water quality data are needed to see 

if the available water is “good enough” for dilution. 

ufficient and reliable water quantity/quality data are necessary for any 

comprehensive water resources management project. However, insufficient data has 

in pursuing successful water quantity/quality simulations 

Nevertheless, decisions still need to be made based on the best 

available technologies and information at the time of decision making. 

70.9%

29.1%

Land

Water

water that is suitable for 

ndustrial cooling water 

problem was dilution 

Solution to Pollution is Dilution”.  This 

concept worked with low population densities. But, with the current requirements and 

not even be a 

enough fresh water to dilute polluted water in 

Moreover, adequate water quality data are needed to see 

ufficient and reliable water quantity/quality data are necessary for any 

comprehensive water resources management project. However, insufficient data has 

in pursuing successful water quantity/quality simulations 

Nevertheless, decisions still need to be made based on the best 
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In October 1997, President Clinton announced the “Clean Water Action Plan” to 

clean up the polluted water bodies of the United States. In his memo, the President 

emphasized the “watershed approach”, which combines the analysis of both point an

non-point source pollutants over an entire region, as opposed to concentrating on just 

direct discharges to an impaired

approach” can be modeled with an integrated water reso

models do not include robust uncertainty 

uncertainty in the hydrologic

1.1 Research Drive 

Society is concerned 

nationally and regionally. 

scales; temporal and spatial. 

certain water quality parameters 

associated water bodies at a 

3 

 

Figure  1-2:  Fresh Water Distribution. 

In October 1997, President Clinton announced the “Clean Water Action Plan” to 

clean up the polluted water bodies of the United States. In his memo, the President 

emphasized the “watershed approach”, which combines the analysis of both point an

point source pollutants over an entire region, as opposed to concentrating on just 

impaired water body (WEF, 1998). Even though the “watershed 

approach” can be modeled with an integrated water resources modeling framework, most 

models do not include robust uncertainty tools to account for the inherited underlying 

hydrologic arena. 

is concerned with maintaining a good quality water resources locally

regionally. A water body’s quality can be continuously examined on two 

temporal and spatial. On spatial scales, concentration maps and/or grids 

certain water quality parameters can be generated for the area/profile of interest a

at a specific point of time (Figure  1-3). 

68.9%

29.9%

0.9%

0.3%

1.2%

Glaciers Fresh Ground Water

Soil Moisture, Others Lakes, Rivers

In October 1997, President Clinton announced the “Clean Water Action Plan” to 

clean up the polluted water bodies of the United States. In his memo, the President 

emphasized the “watershed approach”, which combines the analysis of both point and 

point source pollutants over an entire region, as opposed to concentrating on just 

. Even though the “watershed 

urces modeling framework, most 

to account for the inherited underlying 

a good quality water resources locally, 

examined on two 

and/or grids of a 

of interest and the 
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Figure  1-3: Hypothetical S

Temporal analysis can be 

For example, in many studies, 

concentrations over a specific time frame 

Figure  1-4: Hypothetical 

In some cases both dimensions; spatial and temporal, are combined together to 

form presentations called “change detection maps” which depict changes over a given 

time period of pollution levels, for a certain pollutant, in an area of interest 

For these three cases, model outputs are typically a single value for a location (in 

the case of a map) or a single point in time (for a time series). The most important 

4 

 

Hypothetical Spatial Concentration of a Pollutant. 

can be made for a time period of interest at a specific l

For example, in many studies, researchers are interested in examining 

time frame at a specific location (Figure  1-4). 

 

Hypothetical Temporal Concentration of a Pollutant. 

In some cases both dimensions; spatial and temporal, are combined together to 

form presentations called “change detection maps” which depict changes over a given 

time period of pollution levels, for a certain pollutant, in an area of interest (Salah, 1999)

For these three cases, model outputs are typically a single value for a location (in 

the case of a map) or a single point in time (for a time series). The most important 

time period of interest at a specific location. 

researchers are interested in examining pollutant 

 

In some cases both dimensions; spatial and temporal, are combined together to 

form presentations called “change detection maps” which depict changes over a given 

(Salah, 1999). 

For these three cases, model outputs are typically a single value for a location (in 

the case of a map) or a single point in time (for a time series). The most important 
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5 

advantage of this deterministic approach is that it provides an easy and, relatively, quick 

capture of information. Yet, it does not address uncertainty nor does it provide a probable 

range of values on spatial or temporal dimensions that may be useful in making 

decisions, especially in a multi-criteria decision making process.  

The contributing sources to pollution are either point or non-point. Their impacts 

must be modeled as accurately as possible to estimate the overall conditions of any water 

body under investigation. Generally, there are not enough data or there are uncertainties 

involved in estimating pollution loads. These uncertainties should be addressed and 

adequately incorporated in the modeling process to improve decision making. 

Current practices (chapter 2) and this research, indicate a need to integrate a 

distributed land water quantity/quality model with a complex hydrodynamic and water 

quality model. This integration could provide a base for a holistic integrated basin-wide 

management scheme. Since most of the distributed land models do not have 

comprehensive hydrodynamic/water quality sub-routines (chapter 2), it is almost always 

advisable to link them to a more complex river/lake model to provide the detailed 

information required for basin-wide management decisions. 

1.2 Land-Water Interface 

The land-water interface is where point and non-point pollution sources from 

man-made or natural activities on the land come into contact with surface water (i.e. 

lakes, reservoirs, streams,…etc) either directly through surface runoff or indirectly 

through groundwater. Linking a land model to a water body model at this boundary line 

is a major step in developing an integrated water quantity/quality modeling process and 

poses some technical problems. 
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This research utilizes the Gridded Surface Subsurface Hydrologic Analysis 

(GSSHA) (Downer, et al., 2006), as the land model, and CE-QUAL-W2 (Cole, et al., 

2007), as the water body model, to quantitatively model the land water interface. The 

Watershed Modeling System (WMS) (Nelson, 2008) developed at Aquaveo, L.L.C., 

formerly the Environmental Modeling Research Laboratory (EMRL) at Brigham Young 

University (BYU), incorporates these two models as water resources/quality tools and 

was used as the integration platform in this research.  

To achieve this integration, GSSHA; two dimensional hydrologic model, models 

the land-based activities throughout the watershed. GSSHA output provides boundary 

conditions to CE-QUAL-W2 to model the receiving water body. CE-QUAL-W2 output is 

used to estimate water quantity and quality parameters at specific watershed locations.  

This approach can be used to develop information for managing the watershed 

and to examine the effects of different management practices. It can also be used for 

various basin management approaches such as, Best Management Practices (BMP) or 

Total Maximum Daily Loads (TMDL) studies (US-EPA, 2002).  

A TMDL is a regulatory standard that defines the maximum load of a pollutant 

that a water body can receive and still meet a given water quality standard. It requires an 

analysis of uncertainty. A TMDL, for a given water body is computed as the sum of the 

allowable loads of a single pollutant from all contributing point and non-point sources in 

the watershed for the chosen water body (US-EPA, 2005). The TMDL estimate must 

include a margin of safety (MOS), and must account for seasonal variations in order to 

ensure that the water body can be used for the purposes it is designated for, such as 
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drinking water supply, contact recreation (swimming), and aquatic life support (fishing) 

(US-EPA, 1999-a).  

1.3 Management Scenarios  

In general, models are used to simulate real world situations and results are used 

for management decisions. To use these tools to incorporate uncertainty, multiple 

scenarios are established using different management practices or TMDL plans. Each 

scenario is run multiple times in the two models; i.e. land and water models, while 

varying certain parameters based on the stochastic nature of these parameters. The 

resulting data can be used to obtain a probability density function (PDF) of a desired 

constituent for every scenario. This PDF can be used to estimate the probability of having 

a concentration exceeding a certain value for the plan under investigation (Figure  1-5).  

Figure  1-5 - A shows a PDF for the concentration of a constituent indicating 23% 

as a probability of exceeding a certain concentration threshold, while Figure  1-5 - B 

shows a 60% probability for the same constituent but with a different management 

scenario. 

PDFs can be generated for water quantity parameters as well, i.e., volume of a 

reservoir, discharge of a river at a certain location and so forth. Multiple PDFs can be 

generated for the same scenario at different times. In this case, the PDFs can be used to 

generate a “Probability Density Surface” (PDS) which is a probability surface 

representing all PDFs in time or space for the parameter value. The height of this surface 

is the frequency of occurrence in combination of time and frequency. This generalization 

of the obtained PDFs to produce a PDS can be perceived as adding a third dimension to 
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Figure  1-6: A Probability Density Surface (PDS). 

1.4 Stochastic Modeling 
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without addressing uncertainty. Addressing uncertainty for such operation
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the PDF. This third dimension can be time, to obtain a “time-series PDF” or distance to 

obtain a PDF of a certain parameter along the center line of a river. (Figure  1-6).

 

Probability Density Functions of a Constituent Concentration.  

 

 

: A Probability Density Surface (PDS).  

Most of the data obtained and used as input to water quantity and quality models, 

are of a stochastic nature and should not be used in a deterministic modeling 

without addressing uncertainty. Addressing uncertainty for such operations may be done 

series PDF” or distance to 

). 

 

 

Most of the data obtained and used as input to water quantity and quality models, 

are of a stochastic nature and should not be used in a deterministic modeling approach 

may be done 
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at various levels. One of which is to have models use their output to compute

range”, rather than a “single value” answer.  

An important factor in determining the probability or the threshold value required 

for a decision is the level of accuracy desired (Ramsey, et al., 2002). Modelers 

more time and effort for cases with high level of accuracy needed. Alternativ

same, or less, effort, time and money, modelers, with the aid of PDFs or PDSs, can 

analyze and incorporate multiple results into the decision process. For instance, results 

could infer that there is a 95% probability that the total nitrogen level 

lake ranges between 5.7 and 11.1 mg/l, instead of a single value of 8.2 mg/l. The last 

value might not even be the mean of the obtained PDF and hence it would be an 

inaccurate representation of the population in a deterministic approach (Figure 

 

Figure  1-7: Probable Range of a PDF.   

Results could also show a similar, but narrower, 90% credible interval and so 

forth. PDFs can also be used to determine the probability of exceeding a certain value 

to compute a “probable 

etermining the probability or the threshold value required 

. Modelers may spend 

more time and effort for cases with high level of accuracy needed. Alternatively, with the 

the aid of PDFs or PDSs, can 

analyze and incorporate multiple results into the decision process. For instance, results 

evel at the outlet of a 

lake ranges between 5.7 and 11.1 mg/l, instead of a single value of 8.2 mg/l. The last 

value might not even be the mean of the obtained PDF and hence it would be an 

Figure  1-7).  

 

Results could also show a similar, but narrower, 90% credible interval and so 

forth. PDFs can also be used to determine the probability of exceeding a certain value 
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such as a water quality standard or a spillway elevation.  This allows management plans 

to be better analyzed. 

Water resources decisions often depend on water quality information (Calder, 

2005). However, water quality data are not readily available, and rarely are they available 

at the specific site where decisions need to be made (Takyi, 1995). An important need for 

water quality estimates exists but the data necessary to support this need is limited. Water 

quantity and quality should always be perceived as two faces for one coin; both are 

indispensable factors in integrated water resources management. 

 

1.5 Objectives 

The goal of this research is to develop methodologies and implement tools as a 

proof of concept, to incorporate uncertainty in an integrated modeling framework for 

managing water resources for both quantity and quality. Specifically, the research 

objectives can be listed as follows: 

1. Use stochastic analysis to examine uncertainty in integrated water resources 

modeling on spatial and temporal scales and characterize the effect that 

insufficient data has on model output. This was done using a few selected 

water quantity/quality parameters.  

2. Conceptualize an integrated spatially-based modeling technique to model 

watersheds from both a water quantity and quality standpoint. This approach 

will be able to incorporate existing data sets such as elevation, land use, soil 

that can be used interactively to develop a complete integrated water resources 

picture for a given watershed. 
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3. Link GSSHA to CE-QUAL-W2. 

4. Develop uncertainty analysis sub-routines (within WMS) that enable modelers 

to compute and analyze time series credible intervals, rather than a single 

value for each time step, of pollutants associated with probability levels. 

1.6 Dissertation Layout 

The current research effort is organized in the following chapters: 

1. Chapter 1 introduces the work, states the research need and lists the objectives 

of this research. 

2. Chapter 2 illustrates current research effort that is related to the outlined 

problem. 

3. Chapter 3 covers the methodology followed to reach the stated research 

objectives. 

4. Chapter 4 presents the results obtained and discusses applicability. 

5. Chapter 5 summarizes the conclusions and lists recommendations for further 

research. 
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2 Contemporary Research 

Operation policies for water resources systems should not be implemented 

without forecasting the future state of the resources. For example, consider a reservoir 

that supplies water for multiple purposes; the amount of each scheduled release depends 

on the probable range of inflow to the reservoir. Because of the lack of adequate data to 

characterize physical processes in a hydrologic system, many investigators have 

expanded the application of statistical models to generate synthetic data for use in 

forecasting. Synthetic data also help by incorporating uncertainties and probable extreme 

events (Karamouz, et al., 2003).  

2.1 Integrated Water Resources Modeling 

Water resources management is mainly aimed at making resource allocation 

decisions which include mitigating or preventing the adverse effects of excessive runoff 

and water shortage. Hydrologic modeling serves as a valuable tool in water resources 

management (Calder, 2005). Simulating the hydrologic and water quality behavior of a 

watershed can be used to predict the impacts of proposed land use changes and to 

evaluate management strategies on both a short and long term basis. Water 

resources/quality models have improved considerably over the last decade
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improve the reliability of model output and gives water resources 

better understanding of real water systems (McBride, 2005).  

watershed (Figure  2-1) is the foundation for hydrologic planning 

An understanding of watershed processes is a basic requirement 

resources all over the world. Sound water re

management must be undertaken at a whole-watershed level, rather than just a local 

level (Melching, et al., 2001). A watershed can be regarded 

defined boundaries and elements with clear relationships 

both structurally (in terms of morphology) and functionally (by virtue of the flow of 

matter and energy). The inputs and outputs across the watershed boundary can also be 

(Karamouz, et al., 2003). 

 

 

Watershed Basins and Sub-Basins Sizing Concept.  

Qualitative characteristics of water are also important for water resources 

planning and management. Water quality is evaluated in terms of physical, chemical and 

microbiological properties. Quantitative measurement of these properties is necessary 

water resources 

hydrologic planning 

requirement for 

nd water resource 
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determine water quality. Water resource engineers set water quality requirements to help 

manage these resources. Water quality requirements are determined based on the 

intended use of water; for example, water contaminated by chemicals might reduce crop 

yield but could be suitable as industrial cooling water. Therefore, the water quality 

requirements for each type of water use should be determined, along with assessment of 

raw water quality and selection of suitable water treatment processes, if necessary when 

making management decisions. (Karamouz, et al., 2003)    

The quality of surface and ground water resources can significantly affect water 

use in many regions. In regions where pollutants from human activities have critically 

degraded water quality, the main issue in water quality management is to control 

pollution sources. Control level requirements depend on the water quality standards 

defined for the various water uses. Water quality management is different from water 

quantity management, which is the engineering of water resources systems so that 

enough water will be provided to all potential modelers within a region (Krenkel, et al., 

1980). Water quality modeling, like other modeling efforts, involves unavoidable 

uncertainty which can contribute to inefficient, and in some cases inadequate, decisions 

affecting society environmentally and financially if the uncertainty is not included in the 

decision making process.  

2.1.1 Watershed Concept 

The concept of modeling the watershed as a whole, rather than locally, can be 

applied to any watershed or sub-watershed and is not dependant on the catchment size or 

any other geomorphologic aspect of the watershed. Figure  2-1 shows how a sub-

catchment can still be modeled as a whole watershed, even while the whole watershed 
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can be modeled as one unit. Selecting the outlet location defines the watershed 

boundaries. An outlet should be chosen based upon the management perspective of the 

study. 

For Geographic Information System (GIS)-Integrated models, especially in water 

resources, watershed reporting is mainly the compilation and output of information on the 

selected watersheds. It involves modeler supplied data, tools and models that can answer 

the research questions of interest. Ultimately, the goal is to provide decision makers with 

accurate and reliable information that can help make water resources related decisions. 

The GIS approach of water resources modeling has existed for a substantial time. The 

nature of the water resources and quality modeling is aided by the use of GIS in one form 

or another. Conventional methods used various maps in paper format and used 

approximation techniques for the various geo-processing tools that are currently available 

in computer format. Using the digital, as opposed to the “manual” form of GIS entails 

many benefits, some of which are as follows: 

1. Easier implementation. 

2. Automatic computed parameters. 

3. Conventional overlay operations. 

4. Easier to understand. 

5. Requires consistent raw data. 

6. Models point and non-point source pollutions simultaneously. 

The Better Assessment Science Integrating point and Non-point Sources 

(BASINS) software system is an example of the integrated watershed and water quality 

management software. BASINS (US-EPA, 2007-a) is a multipurpose environmental 
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analysis system designed for use by regional, state, and local agencies in performing 

watershed and water quality-based studies. This system makes it possible to quickly 

assess large amounts of point source and non-point source data in a format that is easy to 

use and understand.  

BASINS allows the modeler to assess water quality at selected stream sites or 

throughout an entire watershed. This tool integrates environmental data, analytical tools, 

and modeling programs to support development of cost-effective approaches to 

watershed management and environmental protection, including TMDLs. 

BASINS includes pre-processing tools, custom databases and a set of 

standardized modeling tools including HSPF, SWAT, QUAL2K (formerly QUAL-2E), 

PLOAD, Aquatox and PEST among other models. However, the only model that has an 

interface in BASINS-4.0, currently, is HSPF. BASINS-4.0 utilizes the open source 

programmable GIS platform MapWindow. It is intended that BASINS 4.0 will 

interoperate with ArcView 3.x and ArcGIS 8.x. Access to data for BASINS is web-based, 

which makes it more efficient. Users do not have to store large volumes of data in local 

drives. Instead, data is accessible as needed. 

2.1.2 Analysis versus Synthesis 

Like most of the basic sciences, hydrology requires both analysis and synthesis to 

use the fundamental concepts in the solution of engineering problems (McCuen, 2005). 

The word analysis is derived from the Greek word analusis which means “a dissolving” 

or “to break apart”. Analysis can be compared with the word synthesis. The word 

synthesis comes from the Latin word suntithenai, which means “to put together”. 

Because of the complexity of most hydrologic engineering design problems, the 
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fundamental elements of the hydrologic sciences cannot be used directly (McCuen, 

2005). Instead, it is necessary to take measurements of the response of a hydrologic 

process and analyze them in an attempt to understand how the process functions. Quite 

frequently, a model is formulated on the basis of the physical concepts that underlie the 

process, and the fitting of the model to the measurements provides the basis for 

understanding how the physical process varies as the input to the process varies. After the 

measurements have been analyzed (taken apart) to fit the model, the model can be used to 

synthesize (put together) design rules.    

2.1.3 Total Maximum Daily Load (TMDL) 

Regulatory standards for watersheds in the U.S. are based in part on TMDL 

requirements. As a result, the focus of water quality management for nutrients like 

phosphorous has moved from end of the pipe or point source control to watershed-scale 

analyses that incorporate point and non-point source pollution assessment  (Shoemaker, 

et al., 2003). 

The TMDL process includes the following key steps (US-EPA, 1999-b):  

1. Standards setting which involves specifying designated uses, and selecting 

appropriate water quality criteria with numeric targets for the water body;  

2. Water body assessments for impairment listing;  

3. Watershed assessment as linkage analyses that associate pollutant sources 

with water quality targets resulting in an estimate of the loading capacity of 

the water body-the TMDL;  

4. Planning and allocating the loading capacity among point and non-point 

sources; and finally 
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5. Implementation of control actions to reduce pollutant loading to the water 

body such as adopting better technologies and operational rules.  

One part of a TMDL study is the Use Attainability Analysis (UAA) which will be 

discussed in Section  2.1.4. 

2.1.4 Use Attainability Analysis (UAA) 

UAA is a structured scientific assessment of the factors affecting the use 

attainment for a water body, such as swimming, fishing and drinking. A UAA is the tool 

used to evaluate the potential to remove non-existing and non-attainable designated uses 

or to establish subcategories of uses (Washington, 2005).  

UAA provides the means for setting new standards and revising or refining 

existing ones. However, like MOS, UAA is not widely used because of lack of technical 

guidance. For this reason, UAA is either arbitrarily employed or not used at all, leading to 

water bodies being falsely listed and efforts wasted in developing TMDLs on the basis of 

inappropriate water quality standards (Olufemi, et al., 2003). 

2.2 Watershed Modeling System (WMS) 

This research effort will use WMS as a pre and post processor GUI for the two 

models, CE-QUAL-W2 and GSSHA. The development of WMS is partly supported by 

the United States Army Corps of Engineers (US-ACE) through research funds to 

Aquaveo, L.L.C. (formerly EMRL of BYU). GSSHA, developed by the US-Army Corps 

of Engineers, and CE-QUAL-W2, developed by the US-Army Corps of Engineers and 

Portland State University, are used in this research. As indicated in Chapter 4, the 

underlying research would be applicable for other models as well.  
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WMS (Figure  2-2) is a comprehensive graphical modeling environment for 

various phases of watershed hydrology, hydraulics and water quality.  WMS includes 

tools to automate modeling processes such as automated basin delineation, geometric 

parameter calculations, GIS overlay computations (land use, soil, rainfall depth, HSPF 

segments, etc.), and cross-section extraction from terrain data. WMS, version 8.0, 

supports hydrologic modeling with HEC-1 (HEC-HMS), TR-20, TR-55, Rational 

Method, NFF, MODRAT, and HSPF. Hydraulic models supported include HEC-RAS, 

SMPDBK, and CE-QUAL-W2 (Nelson, 2008). Two-dimensional integrated hydrology 

(including channel hydraulics and groundwater interaction) can now be modeled with 

GSSHA (Downer, et al., 2006).  All of this in a GIS-based data processing framework 

makes the task of watershed modeling and mapping easier and reliable (EMS-i, 2006). 

As indicated in Figure  2-2, in the pre-processing phase, modelers gather data 

including maps, databases and digital terrain models and other types of field-gathered 

data in an effort to try to extract the necessary model input. Inputs may be generically 

prepared for any model or be generated specifically for a model through the model 

interface within WMS. WMS has various tools to easily extract model-required input. As 

an example, there are tools in WMS to extract cross sectional data from an underlying 

digital elevation model (DEM) or triangulated irregular network (TIN). A major portion 

of the effort in this pre-processing phase is to make sure that all data gathered from 

different sources overlay properly, both horizontally and vertically. 

WMS allows modelers to generate model input files and import pre-generated 

model input files. For some models, WMS enable modelers to verify that the input file 

will not generate any warnings or errors running the model. In other cases, models need 
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more than one input file. Currently, WMS generates the spatial-related input files and 

does not generate the meteorological files for CE-QUAL-W2. 

 

 
 

Figure  2-2 : Conceptual Representation of the Watershed Modeling System. 
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Models can be run from their interfaces within WMS, if applicable, or through the 

stand-alone version of the model. Once run, model output may be read by WMS post-

processing tools to generate data sets, grids, film loops, time series graphs, and 

hydrographs. In some cases, models may be linked through a uni- or bi-directional data 

exchange. WMS links some models together providing an integrated water resources 

framework. There are two types of linkage: 

1. Subsequent linkage (uni-directional): in which model “A” needs to run first 

before model “B” can start running. 

2. Interactive linkage (bi-directional): in which data interchange between the two 

models happens within both runs. 

An example of the subsequent linkage in WMS is the stochastic linkage between 

HEC-1 (US-ACE, 1998) and HEC-RAS (US-ACE, 2006). In this linkage, HEC-1 runs 

multiple times before the output is used in HEC-RAS, which, in turns, runs multiple 

times. This linkage is used to generate flood probability maps (Smemoe, 2004). 

Similar to BASINS, WMS uses a collection of hydrologic, hydraulic and water 

quality models to simulate the integrated behavior of a given watershed. Nevertheless, 

WMS uses a different set of models to achieve the same goals. While BASINS uses 

PLOAD, HSPF, SWAT, QUAL2E and GENSCN (US-EPA, 2007-a), WMS uses HSPF, 

GSSHA, CE-QUAL-W2 and customized post-processing tools. 

2.3 CE-QUAL-W2 

CE-QUAL-W2 Version 3.5 (Cole, et al., 2007) is a two-dimensional water quality 

and hydrodynamic model capable of modeling water bodies with interconnected rivers, 
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reservoirs and estuaries. A typical model domain is shown in Figure  2-3. The model is 

based on solving the two dimensional unsteady hydrodynamic and advective-diffusion 

equations. 

Historically, starting with version 3.1, CE-QUAL-W2 allows modelers to include 

riverine branches in conjunction with reservoir and estuary branches. The current version 

also allows the modeler to insert hydraulic elements between branches (pipes, weirs, 

spillways and gates with dynamic gate openings), use up-to-date re-aeration (including 

spillway effects) and theoretical evaporation models. In addition, the modeler can view 

model results graphically as they are being computed, use a variety of turbulence closure 

schemes, insert internal weirs in the computational domain, use the updated numerical 

scheme ULTIMATE-QUICKEST for advective transport of mass/heat, add float-

activated pumps, use a dynamic vegetative and topographic controlled shading algorithm, 

and include a user-defined number of algal, epiphyton/periphyton, carbonaceous 

biological oxygen demand, suspended solids, and generic model water quality 

constituents. (Wells, 2002) 

CE-QUAL-W2 is jointly-developed by US-ACE, and Portland State University. It 

is one of very few two dimensional water quality and hydrodynamics models currently 

available. It is used by several federal, state, private and international agencies to perform 

hydrodynamics studies of dam operations, eutrophication, dissolved oxygen, other water 

quality issues as well as TMDL watershed processes (Wells, 2002). 

The current version of CE-QUAL-W2 model runs in a stand-alone interface 

(Figure  2-4) that is distributed with the generic version of the model. This interface helps 

CE-QUAL-W2 modelers monitor the progress of their models as they run. WMS 
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modelers generate the control and bathymetry files within WMS and then run CE-QUAL-

W2 outside of WMS. Upon completion of a successful run, the output files are generated 

where they are specified in the CE-QUAL-W2 control file. WMS modelers can then use 

WMS to read the solution and perform further post-processing efforts. 

2.3.1 CE-QUAL-W2 vs. EPA Models  

EPA, through the Watershed and Water Quality Modeling Technical Support 

Center (US-EPA, 2007-c), sponsors the development of models to address similar 

hydrodynamics and water quality issues. Their watershed models include WCS, SWMM, 

WARMF while the water quality line of models include WASP, QUAL2K , Aquatox and 

their hydrodynamic ones include EFDC and EPD-RIV1. 

The Environmental Fluid Dynamics Code (EFDC) is a 3-dimensional 

hydrodynamic model that uses Cartesian, curvilinear or orthogonal horizontal coordinates 

to represent the characteristics of a water body (US-EPA, 2007-b). EFDC is not designed 

to perform water quality modeling. The Water Quality Analysis Simulation Program 

(WASP) utilizes the EFDC hydrodynamic output for water quality modeling in the 

receiving water body. 

QUAL2K is a 1-dimensional river and stream water quality model that is a 

modernized version of the QUAL2E model. It uses MS-Excel as a graphical user 

interface (US-EPA, 2007-c). 

Watershed Analysis Risk Management Framework (WARMF) is a decision 

support system designed to facilitate TMDL analysis and watershed planning. WARMF 

is compatible with the data extraction and watershed delineation tools of BASINS. 
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WARMF is organized into five (5) linked modules under one, GIS-based graphical user 

interface (US-EPA, 2007-c).  

 

Figure  2-3: CE-QUAL-W2 Model Grid. Source: (Cole, et al., 2007). 

 

Figure  2-4: Stand-Alone Interface for CE-QUAL-W2. 
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EPD-RIV1 is a collection of programs to perform one-dimensional water quality 

and hydrodynamic models. It is based on the CE-QUAL-RIV1 model developed by the 

US-ACE. CE-QUAL-RIV1 does not have the ability to characterize the hydraulics or 

water quality of deeper reservoir systems or deep river pools that stratify (US-ACE, 

1995). 

2.4 Girded Surface Subsurface Hydrologic Analysis (GSSHA) 

GSSHA is a two dimensional physically based, distributed-parameter, structured 

grid, hydrologic model that simulates the hydrologic response of a watershed subject to 

given hydro-meteorological inputs (Downer, et al., 2006).   

Major components of the model include spatially and temporally varying 

precipitation, snowfall accumulation and melting, precipitation interception, infiltration, 

evapotranspiration, surface runoff routing, simple lake storage and routing, unsaturated 

zone soil moisture accounting, saturated groundwater flow, wetland peat layer hydraulics, 

overland sediment erosion, transport and deposition, in-stream sediment transport, and 

overland contaminant transport, and uptake.   

In GSSHA, each process has its own time-step and an associated update time.  

During each time-step, the update time of each process is checked against the current 

model time.  When they coincide, the process is updated, and updated information from 

that process is transferred to dependent processes.  The time-step of dependent processes 

may be modified as part of the process update.  This formulation permits the efficient 

simultaneous simulation of processes that have dissimilar response times, such as 

overland flow, evapotranspiration (ET), and lateral groundwater flow.  This scheme also 
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allows an integrated solution of processes coupled through boundary conditions and flux 

exchanges (Byrd, et al., 2005). 

2.4.1 GSSHA vs. HSPF  

The Hydrologic Simulation Program-Fortran (HSPF) is a semi-distributed 

continuous model that combines spatially distributed physical attributes into hydrologic 

response units (HRUs). Each HRU, in response to meteorological inputs and storage 

capacity factors, is assumed to behave in a uniform manner. In an essence, the geometric 

representation of a watershed in a GSSHA model may be coarser than its HSPF 

equivalent. HRUs are based on morphology and in general they are large polygons. 

GSSHA grid cell size may be unrealistically large and/or an HRU may be too small. 

Surface runoff is simulated primarily as an infiltration-excess (Hortonian) process 

(Bicknell, et al., 2001). HSPF allows modelers to emphasize the hydrologic processes 

that are dominant in a watershed by specifying the major characteristics used to define 

HRUs, such as soil type or land use, and by adjusting parameter values during 

calibration. Although selection of parameter values that reflect watershed specific 

physical processes can improve model calibration, estimation of actual parameter values 

from physical measurements is difficult (Albek, et al., 2004). Therefore, optimum 

parameter values are generally obtained through the calibration process (Johnson, et al., 

2003).  

Previous research (Johnson, et al., 2003); (Salah, et al., 2005-a)  indicated that 

HSPF requires cumbersome calibration process in the simulation of stream flow during 

summer period or in arid, semi-arid environments when saturation-excess (as opposed to 

infiltration excess) is a major factor in runoff generation.  
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2.4.2 Hydrodynamic and Water Quality Capabilities  

Both GSSHA and HSPF can model the entire watershed including hydrodynamic, 

and water quality, capabilities to model rivers and reservoirs within the watershed. HSPF 

can be used to model a watershed in a holistic approach.  

One of the major strengths resulting from linking CE-QUAL-W2 to GSSHA is 

the utilization of both extensive hydrodynamic and water quality capabilities of CE-

QUAL-W2 linked with the detailed two dimensional distributed modeling tools in 

GSSHA. However, the statistical methodology proposed in this research can be 

implemented irrespective of the models used. The statistical methodology is universal 

and not model-specific. The implementation shown in the following chapters is specific, 

to these models, for the purpose of demonstration. 

Modeling efforts could be carried out in two fashions; i.e. deterministic or 

stochastic. Each has advantages and disadvantages and may each be appropriate in 

unique situations. 

2.5 Stochastic Processes 

A quantitative description of a natural phenomenon is called a mathematical 

model. A model is usually judged using a single, quite pragmatic, factor, the model’s 

usefulness. There is no such thing as the “best” model for a given phenomenon (Taylor, 

1998). The pragmatic criterion of usefulness often allows the existence of two or more 

models for the same event, but serving distinct purposes.  

The word “stochastic” derives from the Greek (στοχάζεσθαϊ: to aim, to guess) and 

means “random” or “chance”. The antonym is “sure”, “deterministic” or “certain”. A 

deterministic model predicts a single outcome from a given set of circumstances. A 
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stochastic model predicts a set of possible outcomes weighed by their likelihoods or 

probabilities (Taylor, 1998). However, phenomena are not in and of themselves 

inherently stochastic or deterministic. Rather, to model a phenomenon as stochastic or 

deterministic is the choice of the observer. The choice depends on the observer’s purpose; 

the criterion for judging the choice is usefulness. To be useful, a stochastic model must 

reflect all those aspects of the phenomenon under study that are relevant to the question 

at hand. In addition, the model must be amenable to calculation and must allow the 

deduction of important predictions or implications about the phenomenon. 

A stochastic process is a process that can be modeled stochastically. It involves at 

least one random, scalar or vector, variable that takes random values over time or space. 

In stochastic process, usually the word “random” is replaced by “stochastic”. The set of 

all possible and observable values that a stochastic variable can take is called “state 

space” or sometimes called, for simplicity, population. (Lindsey, 2004)  

2.5.1 Random and Stochastic Variables 

Whenever measurements in any natural system are made, for example of an 

effluent biological oxygen demand (BOD5) or a stream flow, some part of their variation 

cannot be explained and may only be attributed to chance or inherent randomness. 

Statistical methods offer means of evaluating this randomness in an objective way, rather 

than the all-too-common confusion of conflicting subjective opinions. They are capable 

of distinguishing between randomness (noise, random variability) and pattern 

(seasonality, trend) using repeatable procedures. Because of the role of variability in 

measurements, statistical methods allow hydrologic and water quality variables to be 

treated as random, or stochastic, variables. The basic distinction between random and 



www.manaraa.com

 

30 

stochastic variables is that a random variable does not imply some natural ordering of the 

results, while a stochastic variable does. For example, a time series of data at a particular 

site, or a set of samples down a river at the same time are considered stochastic variables. 

In either case, the value that a hydrologic or water quality variable may take has at least 

some element of randomness in it, and it needs to be recognized (McBride, 2005). It 

would be tidier perhaps to use just one term, but the literature uses both; random and 

stochastic, with stochastic being more commonly used in hydrologic science.  

2.5.2 Probability Density Function (PDF)  

A PDF is a statistical term for a frequency distribution constructed from an 

infinitely large set of values.  It is a non-negative function (curve), with an integral of 1, 

related to a continuous random variable “A”. The probability that “A” is less than a 

specified value “x” is the area under the curve up to the point “x”. PDFs can be discrete 

or continuous. Discrete PDFs are usually called Probability Mass functions (PMF) 

(Mason, 2001).  

To build a PDF for a specific parameter, it is necessary to follow three major steps 

to obtain a good representing distribution for the parameter under investigation (Bury, 

1999); (Salah, et al., 2005-b).  

1. First, the variable is examined to determine if it is discrete or continuous.  

2. Then the physical process behind it should be inspected before a statistical 

package is used to suggest some distributions that have statistical relevance to 

the data.  

3. Finally, a single distribution should be selected based on physical relevance to 

the variable examined (Salah, et al., 2005-b). 
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The two- and three-parameter gamma distributions have been widely used in 

hydrology, mainly for the purpose of modeling the frequencies of annual floods. The 

Log-Normal distribution is also used. Both are broadly similar in that both are skewed 

with a longer upper tail. Indeed, it is this characteristic which makes them suitable for 

representing annual floods and other hydrologic variables where skewness is invariably 

present (Clarke, 1994). Some other researchers indicate that a Beta distribution with 

specific shape parameter values may be suitable for representing other hydrologic and 

water quality parameters (Salah, et al., 2005-b). 

The general formula (NIST, 2007); (Steeb, et al., 2000) for the probability density 

function of the Normal distribution is as follows, equation (2-1): 

          ���� =  �
��	�μ��

���

√��          �2-1� 

where: 

� =  Location parameter, 

� = Scale parameter.  

The case where µ = 0 and σ = 1 is called the standard Normal distribution. Thus, 

the equation for the standard Normal distribution is as follows, equation (2-2):  

���� =  �
�����

�

√��                             �2-2�  

 

For most earth science observations, a sub-set of the Beta distribution (Figure  2-5) 

may seem to yield a reasonable approximation to most parameters (Bury, 1999); 

(Heyman, et al., 1984); (Ricciardi, et al., 2005); (Valdes, et al., 1990). The Beta 
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distribution is a set of continuous probability distributions bounded by the 0.0 and 1.0. 

The shape of each distribution is determined by the values of the shape factors. The 

general formula (Press, et al., 2005) ; (Palisade, 2007) for the probability density function 

of the Beta distribution is as follows, equation (2-3): 

            ���� =  ������������

�� ,"�                        �2-3�  

where: 

$, % =  Shape Factors 

��$, %� = Normalization Function. 

  

 

Figure  2-5: Sample Beta Probability Distributions. 

 

The normalization function is dependent on the shape factor values and it can be 

considered as a normalization factor that sets the total probability of the Beta distribution, 

which is the area under the curve, to 1.0. 
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As seen in Figure  2-5 the shape factors affect the Beta PDF considerably. When 

both factors are set to 1, the PDF becomes almost identical to the standard uniform 

distribution. With other factors, Beta PDF can approximate a log-normal distribution. 

Probabilities obtained from any PDF are used to estimate the corresponding z-

score from an inverse cumulative distribution function (CDF) (Wichura, 1988). The 

formula for the CDF of the Normal distribution does not exist in simple closed formula 

and it is usually computed numerically (Wichura, 1988). 

A CDF is the set of points, each of which equals the integral of a probability 

distribution starting at the minimum value and ending at an associated value of the 

random variable. A cumulative distribution is constructed by progressively adding the 

frequency across the range of frequency distribution (Palisade, 2007).  

2.5.3 Population Statistics  

For practical reasons, scientists usually use a sample to represent the population 

under investigation. Consequently, inferences made on this sample should not be 

generalized to populations other than the parent population investigated. Inferences, and 

estimates of the required parameter(s), are made based on statistics derived from the 

sample. A statistic is any quantity that can be calculated from observed data. An estimate 

is a statistic used to represent the value of the parameter. While the parameter remains 

unknown, its estimate can be calculated (Ramsey, et al., 2002). 

A population mean, which is a statistical parameter, may be represented by the 

sample average which is in turn an estimate of the mean and therefore it is a statistic. 

Other sample statistics may include, but are not limited to, maximum, minimum, standard 

deviation, kurtosis, t-statistic and z-statistic. 
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Each statistic can be used in specific situations and where the assumptions 

underlying the equations are not violated. The Z-score (equation 2-4) is usually used for 

simplicity but it requires the standard deviation of the estimate which is usually unknown. 

However, if the population standard deviation is unknown, and the sample size is large, 

Z-tools could be used as opposed to the t-tools with little or no violation to the 

assumptions (Ramsey, et al., 2002). 

 

Z − Score = -./012/�� 32421�/�4
5/267247 8�902/0:6 :� -./012/�         �2-4� 

 

Basically, the need for the population standard deviation is to compute the 

standard error of the mean. Estimating it with the sample standard deviation would result 

in a biased estimate unless the sample size is large enough. In real world, it is almost 

always the case that enough field observations are not available and that assumptions 

must be made (Wu, et al., 2006). The assumption of independence is assumed in 

numerous hydrologic and hydraulic modeling situations (Zhang, 2001); (Melching, et al., 

2001).  

The standard error (equation 2-8) is a good measure of the population dispersion 

only if the population follows a Normal distribution. For such an assumption, it is 

expected, as an example, that 95% of the samples would have the sample mean within 

two standard errors of the mean of the current sample (Ramsey, et al., 2002). 
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         Standard Error = ∑��B����

√6                           �2-5� 

where: 

� = Sample mean. 

�D = Sample value. 

E = Sample size. 

2.5.4 Intervals  

When we make a point estimate of a parameter, we obtain an indication of a 

possible value for it. But multiple estimates cannot be expected to return exactly the same 

value. Because of this variability in estimates, our interest may lie more in stating a 

region or an interval in which the true value of the parameter most likely lies (McBride, 

2005). There are three types of intervals that may be used in such circumstances, 

depending on the questions addressed, namely, confidence, tolerance and credible 

intervals.  

1. Confidence intervals are ranges in which the parameter may lie most of the 

time, in repetitive sampling.  

2. Tolerance intervals are ranges covering a stated proportion of the population 

most of the time, in repetitive sampling.  

3. Credible intervals are ranges in which the parameter probably lies.  

The first two intervals are frequentist, in that they strictly only have meaning 

under repetitive sampling. The last is Bayesian, in that the probability statement made 

relates to the particular sample at hand (Taylor, 1998). 
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One may say of a 95% credible interval that there is a 95% probability that the 

parameter of interest lies between the interval limits (McBride, 2005). By “probability” 

we mean a Bayesian personal probability, in which some prior information has been 

incorporated by means of prior distribution. 

A common error is to misinterpret the confidence interval. It is not an accurate 

statement to say that the probability that a parameter is included in a 95% interval is 95%. 

An accurate statement would be “if a large number of the 95% intervals is driven, it is 

expected that the true value of the parameter is included in the interval in 95% of the 

time”. Further, the upper and lower bounds of the interval are random variables because 

they depend on the sample (Good, et al., 2006). 

Another common error in statistics is the use of the notation in equation (2-6) to 

report the results of a set of observations (Good, et al., 2006). 

 

mean ± Standard Error               (2-6) 

 

The main objective of using this notion is to report on: 

� The “correct” result 

� The precision of the estimate of the correct result 

� The dispersion of the distribution from which the observation are drawn 

The standard error is very sensitive to outliers and in this case, it may not be 

accurate to use equation (2-6) to report on any of the objectives listed. Other tools must 

be used instead. 
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Point estimates are seldom satisfactory. For continuous observations, the 

probability that a point estimate is correct is almost zero. In other cases, an estimate of 

the precision of the point estimate is required (Good, et al., 2006). A Common error in 

interval estimation is to use equation (2-7). This equation assumes Normal distribution of 

a random variable. Even in this case “k” should be determined from tables of the 

student’s t-distribution (Good, et al., 2006)  and not from the tables of Normal 

distribution. 

 

CI = XK ± k × N 
√6O            (2-7) 

where: 

P = Sample mean 

E = Sample size 

� = Population standard deviation 

Q = Adjustment factor 

 

Most of the time the population standard deviation (σ) is not known or available 

(Healey, 1999). In most cases, the population standard deviation can be estimated using 

the sample standard deviation (s). Equation (2-8), a modified version of equation (2-7), 

should be used when the population standard deviation is unknown.  

 

CI = XK ± k × N .
√6��O            (2-8) 

where: 

P = Sample mean 
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E = Sample size 

R = Sample standard deviation 

Q = Adjustment factor 

2.5.5 Sample Size  

Sampling distributions are the basis of making inferences about the population 

from a sample. The sampling distribution of the population mean is the probability 

distribution of the mean with repeated sampling. It is generally a function of the 

population distribution and the sample size. According to the Central Limit Theorem, if 

the population is not Normal, the sampling distribution of the sample mean will still be 

approximately Normal provided the sample size is sufficiently large (Lindsey, 2004). 

Unfortunately, the definition of how large the sample should be to satisfy the assumptions 

of the Central Limit Theorem is subjective. Some statisticians (Good, et al., 2006) 

consider a sample “large” if it is 25 or more in size. Obviously, larger sample size is 

better, if available, especially if the population and the sample exhibit a non-symmetric 

distribution. 

Another loose rule of thumb (Healey, 1999) indicates that 50-100 sample size 

should be sufficient to conclude that Central Limit Theorem assumptions are not severely 

violated.  In general, it can be assumed that the sampling distribution of the mean is 

Normal, even if the population distribution is not Normal, if the sample size is large 

enough. However, this also depends on the purpose of the model. A “reconnaissance” 

simulation is definitely different and requires less stringent guidelines than a well 

calibrated simulation used for policy analysis.  



www.manaraa.com

 

39 

2.5.6 Bayesian Approach 

There are generally two broad approaches for statistical inferences and decision; 

Frequentist and Bayesian. The former is sometimes referred to as the “Sampling-theory” 

or “Classical” approach. It is based on assumptions made on the population from the 

sample. In the Bayesian approach, information other than the sample is formally utilized. 

The motivation for the Bayesian approach is the desire to base inferences on “any and 

all” available information (Hays, et al., 1970). Contrary to Frequentists, Bayesians utilize 

subjective information in the analysis. The concept of “degrees of belief” is considered a 

formal part of the analysis. Yet, this does not prevent Bayesians from utilizing the 

“classic” sampling distribution. 

In simple terms, Bayesians do utilize the sampling distributions most commonly 

encountered with frequentists, in addition to other information. For this reason, Bayesian 

approach may be considered an extension, when applicable, of the classical approach 

(Hays, et al., 1970).   

In some cases, Bayesian and Frequentist approaches produce similar results. 

However, the interpretation may be a little different. Obviously, the amount of 

information and the effect of the information on the analysis pose an important factor in 

determining if the two approaches will be similar. If less additional information is used in 

the Bayesian approach (or its effect), it will produce similar results to those expected 

from the frequentist approach.  

2.5.7 Statistical Simulation   

A simulation is the imitation of the operation of the real world process or system 

over time. Simulation involves the generation of an artificial history, or future, of the 
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system and through observations of that artificial history draw inferences concerning the 

operating characteristics of the real system that is presented (Law, et al., 2000). 

Types of simulations (Law, et al., 2000) are: 

1. Static Simulation models where time plays no role. 

2. Dynamic simulation models where system evolves overtime. 

3. Deterministic simulation models where no probabilistic components are 

involved. 

4. Stochastic Simulation where at least one random input is involved. 

5. Continuous simulation models 

6. Discrete simulation models. 

A pseudorandom process is a process that appears random but it is not. 

Pseudorandom sequences typically exhibit statistical randomness while being generated 

by an entirely deterministic computational process.  

Monte Carlo methods are a class of computational algorithms for simulating the 

behavior of various physical and mathematical systems (Landau, et al., 2005). They are 

distinguished from other simulation methods by being stochastic, that is non-

deterministic in some manner, usually by using random numbers or more often pseudo-

random numbers, as opposed to deterministic algorithms. Interestingly, the Monte Carlo 

method does not require truly random numbers to be useful. Many of the most useful 

techniques use deterministic, pseudo-random sequences, making it easy to test and re-run 

simulations.  Monte Carlo methods were originally practiced under generic names such 

as “statistical sampling” (Landau, et al., 2005). 
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Monte Carlo simulation may be considered as a computational algorithm for 

simulating the behavior of a number of potential realizations of the physical system of the 

watershed (Robert, et al., 2004). Monte Carlo simulation randomly generates values for 

uncertain variables sequentially to simulate a model. It was named for Monte Carlo, 

Monaco, where the primary attractions are casinos containing games of chance which 

exhibit random behavior. 

2.5.8 Statistical Sampling   

Statistical sampling is the selection of individual observations from a population 

to form a “sub-set”. There are a number of sampling procedures, all of which depend on 

the objective of the project. In most cases, random sampling is required to minimize bias 

in the resulting inferences. 

The statistical method, Latin Hypercube Sampling (LHS) (Wyss, et al., 1998) was 

developed to generate a distribution of a plausible collection of parameter values from a 

multidimensional distribution. In the context of statistical sampling, a square grid 

containing sample positions is a Latin square if, and only if, there is only one sample in 

each row and each column. A Latin hypercube is the generalization of this concept to an 

arbitrary number of dimensions, whereby each sample is the only one in each axis-

aligned hyper plane containing it. 

When sampling a function of N variables, the range of each variable is divided 

into M equally probable non-overlapping intervals. M sample points are then placed to 

satisfy the Latin Hypercube requirements. This forces the number of divisions, M, to be 

equal for each variable. Total number of instances of M for a total number of variables N 

would result in a total number of simulations equal to M
N
. Also this sampling scheme 



www.manaraa.com

 

42 

does not require more samples for more dimensions (variables); this independence is one 

of the main advantages of LHS. Another advantage is that random samples can be taken 

one at a time, remembering which samples were taken so far. In general, LHS reduces the 

number of simulations required to describe the full distribution, including the tails (Wyss, 

et al., 1998). 

In random sampling new sample points are generated without taking into account 

the previously generated sample points. Thus, one does not necessarily need to know 

beforehand how many sample points are needed. In Latin Hypercube sampling, one must 

first decide how many sample points to use and for each sample point remember which 

bracket it was taken from in the PDF. 

2.5.9 Representing the Population 

For samples of small sizes, summary statistics, like the mean and the standard 

deviation, are almost meaningless. In some cases, the median or the geometric mean is 

far more appropriate than the arithmetic mean to represent the population (Good, et al., 

2006). Using the median is sometimes better than the arithmetic mean. The arithmetic 

mean gives a “weight” to every record in the data set, whereas the median does not, at 

least in the pure sense of the word, “weight” the sample values. Consider a company of 

10 people; 9 employees make 35k and their supervisor earns 150k a year. Their 

arithmetic mean is 46k where as their median is 35K. So the median minimizes the effect 

that outliers have on the data set (Good, et al., 2006). 

The Central Limit Theorem is the foundation for many statistical procedures. The 

Central Limit Theorem states that if the sum of the variables has a finite variance, then it 

will be approximately normally distributed. Since many real processes yield distributions 
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with finite variance, this explains the ubiquity of the Normal probability distribution. The 

amazing and counter-intuitive thing about the Central Limit Theorem is that no matter 

what the shape of the original distribution, the sampling distribution of the mean 

approaches normality. It can be assumed that the sampling distribution is Normal with a 

mean equal to the population mean and a standard deviation equal to σ/√E regardless of 

the shape of the population distribution. Deviations from the normality are generally ok 

in most cases (Ramsey, et al., 2002). 

While testing for the mean, or a “population representative”, and since population 

variance is, in most cases, not known, it can be approximated as indicated above, from 

the sample.  

With all the capabilities of stochastic modeling and the inherit nature of 

uncertainty, it is possible to address, as needed, the level of uncertainty of most modeling 

endeavors. 

The Central Limit Theorem also states that if the results from several random 

processes are combined, the resulting distribution will be normal, no matter what 

distribution types were originally used. This means that I expect the stochastic model 

results to conform to a normal distribution, even though my parameter distributions might 

not be normal; i.e. log-normal or even uniform. 

2.6 Uncertainty for Water Resources Modeling 

One of the greatest challenges facing those engaged in natural resources 

management is the quantification of variability and uncertainty of hydrology and water 

quality in natural systems. Stream networks exhibit wide temporal and spatial variability 
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in flow rates due to regional climatic conditions, seasonal weather patterns and changing 

landscape conditions.  

The natural variability in stream flows and chemical loads in streams makes it 

difficult to assign a single threshold for parameter concentration and load for regulatory 

purposes (Bonta, et al., 2003). Poor sampling designs, monitoring and laboratory 

sampling errors and improperly used analytical relations are among the factors that add to 

uncertainty. Field data used for watershed assessments are usually limited because of the 

high cost of sampling. Watershed models are often inaccurate because of spatial 

discretization, poor calibration and inadequate validation. For some water quality 

measures, such as toxic constituents, there are no models or data to support modeling 

them adequately (Bonta, et al., 2003). 

There are two types of uncertainty; type I and type II (Takyi, 1995).  

1. Type I is caused by lack of appropriate knowledge of the dynamics or 

relationships which may lead to use of inappropriate models.  

2. Type II is characterized by the stochastic nature of the variables, incomplete 

datasets and errors made in measuring, processing of raw data.  

2.6.1 Accounting for Uncertainty  

Any prediction is uncertain, and in the mathematical modeling of hydrologic and 

water resources systems this uncertainty has to be accounted for (Hession, et al., 2000); 

(Bobba, et al., 1996). Of the two primary ways to model uncertainty, one method is based 

on considering all uncertain elements as random variables and on the use of probabilistic 

and statistical models. The other approach is based on the theory of fuzzy sets, where 

uncertainty is modeled by membership functions (Karamouz, et al., 2003). 
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Many researchers indicate that scientific uncertainties must be estimated and 

addressed (Hession, et al., 2000). Some researchers (Wu, et al., 2006) classify the 

complexity of the most common tools of addressing uncertainty ranging from simple to 

complex to the following: 

� Sensitivity Analysis which is basically a “one variable at a time” approach 

(Hession, et al., 2000). This is usually the most traditional and quick 

approach. However, it does not include any likelihood of how different the 

current value is from the best-representing one. 

� First Order Error Analysis (FOEA) (Wu, et al., 2006) which is derived from a 

Taylor’s series of a linear approximation around the mean. FOEA is generally 

simpler than simulation-based approaches and it can separate the model output 

uncertainty into its sources. The oversimplification, and occasional 

inaccuracies of FOEA is backed up by practical and fast application of the 

approach. 

� Monte Carlo Simulation (MCS) is numerically capable of operating complex 

systems. Unlike FOEA, it is not restricted to linear and continuous systems. 

Modelers should pay close attention to the selection of the parameter PDF 

used and the number of simulations. Accuracy expected from MCS is largely 

affected by how well the PDF represents the input parameters (Landau, et al., 

2005). 

Modeling watersheds in a simulation-based framework can help considerably to 

account for uncertainties and hence the predictive capability of the model will be greatly 

enhanced (Salah, et al., 2005-b). In this sense, any model parameter that is considered as 



www.manaraa.com

 

46 

a random variable has to have a PDF or PMF instead of a single value. Other parameters 

that do not exhibit a large amount of uncertainty, based on experience or previous model 

sensitivity analysis or even lack of information, are entered into the model as a single 

value.  

2.6.2 Examining Uncertainty 

Uncertainty refers to random prediction error resulting from limitations in the data 

and models. The level of uncertainty determines the probability of achieving the desired 

standard at a specified frequency under some given conditions. Uncertainty can be 

reduced in many cases by collecting additional data and improving forecast models under 

adaptive management framework (Walker, 2003). 

There are three types of uncertainties in most natural phenomenon. Any effort in 

reducing the uncertainty at any of these types will result in enhanced model output. 

1. The natural uncertainty inherent in the phenomenon itself;  

2. Model parameter uncertainty and  

3. Model uncertainty. (Marco, et al., 1993). 

2.6.3 GIS and Uncertainty  

When GIS-based hydrologic and water quality models are used to evaluate the 

response of a watershed, every effort must be taken to minimize model uncertainties 

associated with input data. Results of some research (Cotter, et al., 2003) indicate that 

GIS data resolution has a significant impact on model output uncertainty. Models were 

found to be more sensitive to DEMs than land use and soil data in predictions. However, 
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for a mid-size watershed, model predictions were most likely acceptable because of low 

relative error, up to pixel size of 150m (Cotter, et al., 2003). 

In general, water quality management is complex because rivers and lakes are 

polluted from multiple sources. Therefore, it is necessary to use models that incorporate 

uncertainty and complex characteristics of the pollution problem. Stochastic modeling, in 

which stream flow and also various water quality parameters are assumed to be random 

variables, has been formulated by many researchers (Karamouz, et al., 2003). 

2.6.4 Guidelines and Uncertainty 

Federal guidelines (US-EPA, 1999-a) require consideration of variability and 

uncertainty in the development of TMDLs to meet water quality standards in impaired 

water bodies. Consideration of these factors is necessary to ensure that a TMDL 

implementation will meet objectives with a reasonably high probability of success and in 

a cost-effective manner. These requirements can be met using a variety of implicit or 

explicit approaches. Implicit approaches embed an MOS into one or more conservative 

assumptions in supporting analysis. If the MOS is not quantified, there is some risk that 

the resulting load control programs would be over-designed (resulting in unnecessary 

regulations and expenses) or under-designed (having a low probability of meeting 

objectives). If the MOS is explicitly quantified, control measures will generally be over-

designed sufficiently to achieve the particular goal with a particular level (Walker, 2003).  

2.6.5 Parametric Uncertainty 

A number of concerns exhibit marked uncertainty for some aspects in integrated 

water quantity and quality management (Olufemi, et al., 2003).  
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First, in setting water quality standards, translating the narrative of designated 

uses, such as the requirement for fishable waters, into numeric target values like 

minimum dissolved oxygen concentration to support fish population is rather imprecise 

(US-EPA, 1999-a).  

Second, uncertainty in a watershed’s water body assessment results from the 

inadequate frequency and spatial distribution of observations of key water quality criteria, 

a situation that is derived from limited resources available to state and federal agencies 

responsible for ambient water quality monitoring.  

Third, linkage analysis involves the use of simulation models. Such process-based 

models are characterized by structural and parametric uncertainties, the former resulting 

from an inadequate conceptual understanding of the internal behavior of the water body, 

and the latter from the inability to uniquely estimate the process parameters that quantify 

the component mechanisms in the model.  

Fourth, the TMDL allocation formula includes the margin of safety that accounts 

for uncertainties in relating pollutant loads to receiving water quality.  

Considering the current state of research, there is a question posed to water 

resources managers, and that is; will our decisions generally be better if we have some 

idea of the range of possible outcomes that might result? Many researchers believe the 

answer is yes (Reckhow, 2003). U.S. EPA also believes the answer is “yes”, although 

their reasoning is unclear (US-EPA, 2005). EPA’s perspective is implicit in their 

technical requirement for an uncertainty-based MOS in a TMDL application for instance; 

however, absent from EPA guidance is an explanation as to why decisions improve with 

an uncertainty analysis.  
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Decision makers are better off knowing the forecast uncertainty and for them to 

realize that they first need (1) motivation, that is, they must become aware of substantial 

magnitude of forecast error in many water resources assessment and (2) guidance, 

ideally, they need relatively simple heuristics that will allow them to use this knowledge 

to forecast error to improve decision making in the long run.  
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3 Methodology 

This research is carried out in three interrelated parts; a conceptual framework, 

software development, and application demonstrations. The conceptual framework 

provides the theoretical basis and the software development describes the development of 

the tools used for its implementation. These tools are used to examine case studies that 

demonstrate the research concepts and provide a guide for implementing them in a 

watershed approach to water management.  

3.1 Conceptual Framework  

There are two interrelated driving forces for this research:  

1. Develop an integrated water resources and quality modeling tool and, 

2. Develop and implement a method for addressing uncertainty in integrated 

water resources modeling. 

Any comprehensive integrated water resources framework should include routines 

that model both the land and water portions of the watershed, from both quantity and 

quality perspectives. As indicated in Chapter 2, currently, no model exists that combine 

modeling the land and water portions of the watershed with similar strength. This 

research makes use of a strong land model, GSSHA (Downer, et al., 2006), which uses 

spatial distribution to model localized land-based activities accurately and in a detailed
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manner, and a water body model, CE-QUAL-W2 (Cole, et al., 2007), which models the 

hydrodynamics and water quality of rivers, lakes and estuaries using a longitudinal grid 

to capture the changes over the water body profile.  

A stochastic approach is used as a means of addressing uncertainties inherent in 

the hydrologic and water quality arena. In short, a deterministic approach still serves an 

important role in today’s hydrologic analysis. However, using a stochastic approach 

allows decision makers to include uncertainty in their analysis. 

All models operate on particular spatial and temporal domains. Integrating one 

model to another must take into consideration the spatial and temporal nature of the 

models involved. Linking GSSHA to CE-QUAL-W2 involves some spatial aspects that 

required innovations to implement. Integrating the two models requires a link between 

the two different domains (Figure  3-1) that successfully routes the water and chemical 

fluxes in a mass-preserving approach. The two models are linked in a framework (Figure 

 3-2) that models the land-water interface linked processes stochastically in order to 

address the uncertainty inherent in these types of models.  

Conceptually, this approach will allow water resources managers to be able to 

model point and non-point source pollution throughout the basin, using a calibrated 

GSSHA model, route the overland flow to the adjacent, if any, water body and use these 

results as boundary conditions for a calibrated CE-QUAL-W2 model. The overland flow 

is routed to the adjacent water body through GSSHA grid cells or through a stream node. 

The stream node is the intersection of the GSSHA stream and the segment map.  
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3-1: Linking Two Models with Different Domains. 

 

Integrated Water Resources Modeling; Conceptual Framework.
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management scheme. For example, a BMP, a TMDL study or a UAA can be simulated 

with an integrated modeling framework similar to the one proposed in this research. 

Figure  3-1 shows the difference between the model domains. The horizontal 2-D 

grid represents GSSHA’s grid where the land based activities are simulated. The vertical 

2-D grid represents CE-QUAL-W2’s laterally averaged longitudinal grid. As indicated, 

the output from the horizontal grid is used, in this research, as input to the vertical grid.    

Figure  3-2 demonstrates the overall integrated process investigated in this 

research. Both nature-driven and man-made inputs to the land are modeled and the 

resultant output is routed through to the receiving water bodies prior to leaving the 

watershed through withdrawals. 

3.1.1 Land Modeling 

In the framework used in this research, GSSHA is used to model the overland 

flow and associated processes which occur in the watershed. As noted, GSSHA’s strength 

is the ability to model hydrologic processes using a two dimensional spatial grid. Instead 

of using deterministic values for GSSHA input parameters, the framework developed in 

this research allows modelers to stochastically choose values from a pre-defined, or user-

defined, parameter probability density functions (PDF) to help understand and quantify 

the uncertainty in various model parameters.  

In some cases, values for some parameters are unknown or have a high degree of 

uncertainty due to measurement, instrumental or any other type of errors (Downer, et al., 

2006). In this sense, the stochastic representation of model input parameters is very 

useful to manage, identify and include these uncertainties in subsequent management 

phases. Modelers will be able to simulate a potential range of system values using a large 
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number of runs based on different values automatically picked from the pre-defined PDF 

(Salah, et al., 2005-b).  

This research investigates if stochastic land modeling overcomes model and 

parameter-related uncertainties. The research focused on parameter-related uncertainties 

which are simply a result of, for example, measurement, instrumental and recording 

errors or true parameter variability. GSSHA-related uncertainties address outputs in the 

model that are a direct result of the uncertainties in the used processes in GSSHA and if 

they are best suited to the conditions of the watershed modeled.  This research did not 

examine model-related uncertainties.  

As indicated in Chapter 2, GIS data resolution can affect model output. In a 

similar fashion, and as demonstrated in this and the following chapters, the grid cell size 

of GSSHA affects model output and hence the overall results. However, since the main 

advantages of statistical simulation is that it overcomes many uncertainties and 

ambiguities in the choice of modeling factors such as the grid cell size. This research 

indicated that the effect of varying cell sizes have on output in stochastic modeling is not 

as apparent as for deterministic modeling.  

Since GSSHA does not currently - 2009 - support irregular grids, selecting 

GSSHA grid cell size depends on many factors. Some considered in this research are: 

1. Accuracy: cells need to be as small as possible to depict local changes in input 

parameters and produce the accuracy desired. 

2. Data Availability: cell sizes are often determined by available data, modelers 

should not use smaller cell sizes than the available data can provide for, 

otherwise there will be a great deal of interpolation and estimation. 
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3. Sensitivity: depending on the case, watershed and the main parameter being 

modeled, some hydrologic models tend to be affected more by cell sizes as 

opposed to some other models that exhibit little or no sensitivity to cell size. 

4. Possibility of irregularly sized grid. In most cases, relatively large grid cells 

are appropriate where either no great changes in model input parameters are 

expected or little accuracy is needed at a particular location with small cell 

sizes needed in areas where higher accuracy is desired and complimented by 

sufficient data. 

5. Computing power: ideally, cell sizes are coordinated to not exhaust computing 

resources by creating overwhelming file sizes. 

As part of this research, stochastics were used in GSSHA, and could be used in 

CE-QUAL-W2, interchangeably to change the parameters that the modeler thinks will 

possess a high degree of uncertainty and affect the model results. At the end of this phase 

of modeling, multiple GSSHA runs, as opposed to a single deterministic run, are 

simulated based on a number of stochastic inputs. These runs need to be processed before 

they can be used in the following water modeling phase of the linkage. 

3.1.2 Water Modeling 

In this research, CE-QUAL-W2 is used to model the hydrodynamics and the 

water quality aspects associated with a reservoir serving as the receiving body within a 

watershed. CE-QUAL-W2 creates a rectangular grid that approximates the orientation, 

length and width of the actual physical boundary of the water bodies (Cole, et al., 2007). 

These approximations are determined by the modeler and, of course, accurate 
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approximations are required for reliable models. In this regard, it is important to represent 

this interface correctly.  

In CE-QUAL-W2, a water body is divided into one or more branches. Branches 

may be established according to natural sub-boundaries in the water body or according to 

special modeling requirements. Each branch is divided into one or more segments. 

Similar to branches, segments may be established according to natural geometry of the 

water body or to account for other modeling requirements. Each segment may, then, be 

vertically divided into one or more layers (Figure  2-3). Based on that, the water body is 

modeled with a vertical two dimensional grid where each segment is laterally averaged 

and hence any bank-to-bank changes are compiled into one cell. Like any model, the 

selection of cell, branch, segment and layer sizes, depend on the accuracy desired. 

3.1.3 Spatial Linkage 

This research defines the spatial linkage or the land water interface as the 

geometric boundary between the land and water portions of the watershed. It is the 

shoreline of the water bodies modeled by CE-QUAL-W2. 

The main concept of this definition is to get all inputs from land to the water 

(Figure  3-3). As seen in Figure  3-3, conceptually, the linkage between GSSHA and CE-

QUAL-W2 is not difficult. However, when the two model domains are discretized in 

dissimilar fashions, the interface between the domains becomes much more complex.  

A major part of the challenge of linking these two specific models is the 

geometric dissimilarity of the model domains. GSSHA models a land segment using a 

horizontal two dimensional grid whereas CE-QUAL-W2 is a two dimensional laterally 
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average model (vertical two dimensional). The aggregated input from GSSHA is 

generated at the top layer of the CE-QUAL-W2 model as input.  

 

 

Figure  3-3: Modeling Domains. 

A main assumption of this research is that the overland flow, from GSSHA, is 

combined into the top layer for each CE-QUAL-W2 segment. Thus, all the water fluxes 

from GSSHA are aggregated into the top layer of each CE-QUAL-W2 segment. GSSHA 

does compute groundwater flows, but there is nothing in the code that would allow 

“extracting” the information easily enough to include in a stochastic modeling sequence 

(Downer, et al., 2006). 

On the other hand, CE-QUAL-W2 allows tributary inflows to be distributed 

among model layers. Options for distributing the inflow among layers are: 

� Even distribution among model layers [DISTR]. 

� Density-specific distribution [DENSITY]. 

� User specified range of layers [SPECIFY]. 
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In this research, the third option is assumed. It is assumed so, as currently, 

GSSHA underground flows are not contributing to lower, than the top layer, layers in 

CE-QUAL-W2. Thus, for areas where groundwater exfiltration to a water body is 

significant this approach would not result in a reliable model unless the users manually 

implement either one of the first two options. 

On the spatial scale, three options were identified in this research to model the 

linkage between the land and water in this approach: 

1. A GSSHA Lake: A lake in GSSHA is defined by a set of cells representing 

the initial, minimum and maximum water surface (Byrd, et al., 2005). Lakes 

polygons in the WMS interface for GSSHA are used as reference features and 

are not actually used by GSSHA. GSSHA lakes are not allowed to shrink 

below the minimum water surface elevation or extend beyond the maximum. 

This research indicated that if a GSSHA Lake is used in the spatial linkage, 

the stream network must extend to the minimum water surface elevation cells, 

not the maximum or initial (Figure  3-4). Figure  3-4, A indicates stream 

network that is not extended to the minimum water surface elevation cells; i.e. 

the inner most and dark cells. Whereas, Figure  3-4, B shows the stream 

network goes beyond the outer most, light grey, lake grid cells, to be 

connected to the minimum water surface elevations. The linkage proposed in 

this research results in direct impact to the water surface elevations in the CE-

QUAL-Model as a result from the input from GSSHA, the linkage (if a 

GSSHA Lake method was used) keeps track of the lake water surface 
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elevations and update them as appropriate. The spatial linkage in this research 

is not assumed to be bi-directional and thus this option is not considered
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Figure  3-5: Boundary Cells. 

 

 

Figure  3-6: Cell Centroid. 

 

Cell centroid: In this research, a cell is considered a boundary cell if the cell 

centroid is inside the segment polygon. The overlapping percentage between 

the cell and the segment polygon is not considered (Figure  3-

, A shows a cell that is 76% covered by the segment but the cell 

centroid is outside the segment area, thus it is not included as a boundary cell. 

On the very contrary, Figure  3-6, B shows a cell that only overlaps a segment 

polygon by about a quarter of its area but the cell is included as a boundary 

cell because the cell centroid lies within the segment polygon.  
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centroid is inside the segment polygon. The overlapping percentage between 
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centroid is outside the segment area, thus it is not included as a boundary cell. 
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cell because the cell centroid lies within the segment polygon.   
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Double Cell Selection: I paid close attention towards selecting a cell more 

the boundary cell selection is solely based on arcs compounding 
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To avoid duplicate cell selection, my algorithm keeps track of selected 

and checks to see if a new cell that need to be added is already selected or not.

Meandering Shoreline: when the general direction of the shore

orthogonal; i.e. parallel to either side of the GSSHA grid, (Figure  3-
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cells. In some cases meanders in the shoreline would lead to selection of two 
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avoided. In this case, the first cell that has its centroid outside the segment 

polygon is eliminated. 

� Ortho-Adjacency: Similar to L-Adjacency, boundary cell selection may result 

in ortho-adjacent cells (Figure  3-8, B). Ortho-Adjacent cells may result in 

double or inaccurate inflows to the designated segments. Thus ortho-Adjacent 

cells were avoided. This research uses proposes spatial filtering to avoid 

Ortho-Adjacency. 

� Spatial Filtering: as used in image analysis, filtering is a selective process 

meant to enhance features in a grid. In this algorithm, a 3x3 filter is used to 

scan through the bounding box of the water body, as opposed to the entire 

GSSHA grid, from the top left corner to the lower right. The filter evaluates 

every 9 cells, a group at a time, and eliminates both the Ortho and L-

Adjacency issues outlined above. The filter is designed to get rid of one of the 

non-collinear cells in an L-Adjacent cells situation (Figure  3-8, A) and the two 

non-collinear cells for ortho-adjacent cells (Figure  3-8, B). 

� 4 or 8-connected: The direction of flow from a GSSHA cell to a CE-QUAL-

W2 segment, orthogonal (Figure  3-9, A) or ortho-diagonal (Figure  3-9, B) is 

not crucial in this approach since it does not affect inputs to CE-QUAL-W2. 

� One-Cell Boundary: In some cases where the segment polygon is too narrow 

in relation to the GSSHA model grid cell size, the algorithm developed in this 

research is set to select one cell wide for the segment even though the cell 

would not cover the centroid or have a significant overlap with the segment 

polygon (Figure  3-10). 
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Figure  3-8: L & Ortho-Adjacency. 

Figure  3-9: 4 and 8–Connected Cells. 

 

Figure  3-10: One-Cell Boundary. 

 

 



www.manaraa.com

 

65 

� Duplicated Segment Designation: in some cases, a cell may overlap more than 

one segment. For obvious reasons, the algorithm does not allow multiple 

segment designation for the same cell. In such a situation, the algorithm 

designates a segment to the cell based on the shortest distance from the cell 

centroid to the segment polygon centroid.  

3. A Segment ID Index Map: the water body in the CE-QUAL-W2 model is 

divided into branches and each branch is divided into segments. An index map 

is generated for the whole catchment with the same grid cell size as the 

GSSHA model. An integer value is assigned to each cell in this index map as 

follows: 

� Zero: for cells that are not overlapped by the water body. 

� Non-zero: for the cells that are overlapped by the water body. Each value 

represents the segment number that is mapped to the cell. 

Out of the above available three options, the first one is ruled out because of 

potential programming issues in both WMS and GSSHA. The “index map” (option3) was 

favored for consistency with the current GSSHA interface in WMS. Based on personal 

communication with the GSSHA development team, it was recommended to proceed 

with a combination of the last two options as appropriate.   

In summary, this is how the spatial linkage algorithm was implemented: 

1. Verify that both branch and segment coverages exist for the water body. 

2. Verify that a GSSHA Grid exists and covers at least the bounding box of all 

segments in the CE-QUAL-W2 model. 
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3. Get the segment ID range; i.e. minimum and maximum segment ID. Noting 

that the minimum segment ID should always be 2 for a successful CE-QUAL-

W2 model. 

4. Scan through all the GSSHA grid cells and determine the cell centroid. 

5. Get the first segment polygon that encloses the cell centroid. 

6. Assign the segment ID to the grid cell.  

7. Create the index map file for further processing. 

A major source of temporal input is the stream flow. In this approach, stream 

input to the water body is obtained from the GSSHA output hydrograph at the stream 

nodes. Stream nodes are nodes where streams intersect CE-QUAL-W2 segments. The 

hydrograph is added as a boundary condition to the particular segment (Figure  3-3). 

3.1.4 Temporal Linkage 

For the temporal linkage, the duration, time step, start time, and end time of the 

two models should be related. For this research, there are basically two ways of 

temporally linking the GSSHA and CE-QUAL-W2 models: 

1. Identical time-stepping: using the same time step, start and end date for the 

two models, and 

2. Interpolated time step: using a different time step for the two models and 

interpolating the results for one to the other. 

Practically, the CE-QUAL-W2 time step should be set equal to the hydrograph 

output frequency in GSSHA (Hyd_Freq), and identical time-stepping should be used for 

ease of modeling (Downer, et al., 2006) ; (Cole, et al., 2007). This would allow 
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aggregated fluxes from GSSHA to be considered as direct input in the CE-QUAL-W2 

segment inflow file. Interpolated time step data requires an added effort that can be 

avoided. Another disadvantage is the speculation that interpolated inputs may not 

represent the actual input at the interpolated time step.  

GSSHA model run duration does not need to be the same as CE-QUAL-W2 run 

duration. Generally there are three cases for the run durations of the models: 

1. GSSHA run duration is longer than CE-QUAL-W2 run duration. In this case, 

the linkage is designed to “trim” the flux files generated by GSSHA to match 

the total run duration of CE-QUAL-W2, specified in the control file. 

2. GSSHA run duration is shorter than CE-QUAL-W2 run duration. In this case, 

the linkage is designed to “extend” the flux files generated by GSSHA using a 

dummy record that has a flow of zero and Julian date matching the end of the 

CE-QUAL-W2 model specified in the control file. 

3. GSSHA run duration is the same as the CE-QUAL-W2 run duration. In this 

case, the linkage is designed to make sure and slightly adjust, if necessary, the 

last time step in the GSSHA-generated flux files.  

3.1.5 Stochastic Approach 

As noted in Chapter 2, some parameters are best handled stochastically, which 

means that their values are chosen from a pre-defined PDF, as opposed to using a single 

value. The framework developed in this research is designed to allow modelers to define 

a PDF of their choice or use pre-defined standard PDFs, for a given set of parameters.  

I used static simulation model; i.e. Monte Carlo Simulation, to select parameter 

values. The selection process is assumed to be either random or follow an LHS scheme. 



www.manaraa.com

 

68 

The list of currently available distributions in the interface developed for this research 

includes: 

� Beta Distribution (with default shape factors of α = 2 and β =7 by default) 

� Normal Distribution, 

� Log-Normal Distribution, and 

� Uniform Distribution. 

In accordance with other research efforts (Ricciardi, et al., 2005); (Heyman, et al., 

1984); (Valdes, et al., 1990), the Beta distribution was selected to be the default 

distribution in this interface. The main reasons the Beta distribution (Figure  3-11) was 

incorporated in the interface and set as the default distribution are as follows: 

� Positive: most hydrologic modeling parameters are positive. 

� Bound between 2 values (minimum and maximum): it is evident that most 

hydrologic parameters have extreme values that they do not go beyond. 

� Not truncated: as opposed to Normal distribution, the minimum and maximum 

values are not represented by a truncated probability distribution function. The 

minimum and maximum are actually features of the distribution.  

� Can be used to represent outliers and extreme values: Most hydrologic 

parameters are generally distributed around the median with very few 

occurrences of “extreme events”. 

� Can approximate normal, log-normal and other types of distributions. 

As an example, the PDF with α = β = 7 (Figure  3-11) may be a good 

representation of some variables where the majority of the parameter values lie in the 
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middle zone with minimal probability of occurrence on the two edges. Also, the PDF 

with α = 2 and β =  7 (Figure  3-11) may be a good representation of some variables 

where the majority of the parameter values lie in the lower zone with minimal probability 

of occurrence on the higher ranges. 

 

 

Figure  3-11: Sample Beta Distribution Set for Earth Science Observations. 

3.1.6 Credible Intervals 

As indicated in Chapter 2, equation (2-8) was used to estimate the credible 

interval for the time series plots. The interface I developed in WMS is designed to 

indicate the following set of probabilities. These probabilities are utilized to satisfy 

equation (3-1) and Table  3–1: 

� 50% 

� 80% 

� 90% 

� 95% 
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� 98% 

� 99% 

� User defined 

Credible Interval Probability = 1 −  α     �3-1� 

where $ = Confidence level. 

Table  3–1: Z Scores for Various Confidence Levels. 

Confidence Level α Z [⁄  Z-Score 

50.0% 0.500 0.2500 ±0.675 

80.0% 0.200 0.1000 ±1.282 

90.0% 0.100 0.0500 ±1.645 

95.0% 0.050 0.0250 ±1.960 

98.0% 0.020 0.0100 ±2.326 

99.0% 0.010 0.0050 ±2.576 

99.9% 0.001 0.0005 ±3.291 

 

Building an initial model helps in refining the results. If the interval width is 

wider than anticipated for the desired credibility level (i.e., 95% credible interval), a 

desired interval width can be determined using the initial model results. 

Assuming the standard deviation of the sampling distribution remains the same, 

the number of simulations required to get a specific interval width for the corresponding 

credibility level can be estimated using equation (3-2). 

Referring to equation (2-8) and since in most cases, the population standard 

deviation is not known, equation (3-2) was used in estimating the credible interval width. 
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Width_` = k × N .
√6��O          �3-2� 

where: 

abcdℎfg = Credible interval width 

E = Sample size 

R = Sample standard deviation 

Q = Adjustment factor (e.g. Z-Score) 

In this research, the number of simulations is viewed as the “sample size”. 

Following equation (3-2), and using the values for the sample standard deviation and 

desired credible interval width and the credibility level, modelers will be able to 

determine the required number or model runs (sample size) using the developed interface. 

Each point in a time series output, or an output grid, of CE-QUAL-W2, as an 

example, is basically a representation of the population which can be viewed as all the 

possible values that could have happened for this particular location and time step. In this 

research, this point is considered as a sample mean which may vary from one sample to 

another due to the variability of the input parameters used to obtain it.  

As indicated in Chapter 2, it is assumed that sample means (point values) tend to 

be normally distributed even though the population, which considers all potential values 

for the parameter under investigation at the respective point in time and space, may not 

follow a Normal distribution. 

Currently, WMS users can generate a deterministic time series from CE-QUAL-

W2 output representing parameter values at a specific segment and layer over time. These 

values are generally considered what would be expected at the specific location and time. 

In the stochastic approach presented in this research effort, these values are only 
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considered representatives of the “population” of that parameter at the respective location 

and time. The “population” of the parameter is all the possible values that could occur for 

the parameter at the specific location and time. The population of an output parameter in 

CE-QUAL-W2, like most other models, is a direct result of model and parameter 

uncertainties.  

To illustrate the methodology followed in this research to represent stochastic 

time series, Figure  3-12 shows a portion (only four time steps) of a deterministic time 

series plot of a pollutant. As indicated in the figure, the last time step was investigated for 

the potential population. The solid line, with marking symbols, in Figure  3-12 shows a 

portion of time series of a deterministic output. This portion of the time step shows 4 time 

steps, 3 of which represented by small squares where the most right one, “the investigated 

time step”, is represented by a star. The bell shaped curve indicates a hypothetical 

distribution of the same parameter at the last time step (the furthest to the right). As 

shown, the relative position of the deterministic line and the hypothetical value 

distribution divides Figure  3-12 into four possible cases: 

 

A. The deterministic value seems to correspond to the median of the distribution of 

the parameter at the investigated time step. This is evident from the fact that the 

value of the time series at the investigated time step seems to center vertically 

with the population PDF. This would mean that this value seems to be a good 

representation of the population. In this case, the deterministic modeling may be a 

good representative of the actual value at the investigated time step. However, this 

may not be the same across all other time steps (Figure  3-12, A). 
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B. The deterministic value seems to be at the lower (left) tail of the distribution of 

the parameter at the investigated time step. In this case, the deterministic 

modeling may have under-estimated the actual value at the investigated time step. 

However, and as with the previous case, this may not be the same across all other 

time steps (Figure  3-12, B).  

 

 

Figure  3-12: Distribution of a Parameter and a Deterministic Time Series. 

 

C. The deterministic value seems to be at the upper (right) tail of the distribution of 

the parameter at the investigated time step. In this case, the deterministic 

modeling over-estimated the actual value. However, and as with the previous 

cases, this may not be the same across all other time steps (Figure  3-12, C).  

D. The deterministic value seems to be as an outlier in relation to the distribution of 

the parameter at the investigated time step. In this case, the deterministic 

modeling may have considerably over-estimated, or under-estimated if the outlier 
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is on the other side, the actual value at the investigated time step. However, and as 

with the previous cases, this may not be the same across all other time steps 

(Figure  3-12, D).  

It is evident from Figure  3-12 that one cannot generalize a trend for all time steps. 

A deterministic model may result in over- or under-estimation of the parameter under 

investigation or anything in between. Further, it can change across time steps. A 

deterministic model may result in an over-estimation in some time steps and under-

estimation in other time steps for the same model. A better way to represent this variation 

is with a credible interval that contains the mean as well as the upper and lower bounds of 

the interval across the time series plot (Figure  3-13). 

 

 

Figure  3-13: Credible Interval Time Series Output. 
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Figure  3-13 shows the same portion of the time series with the four time steps 

shown and only one of them being investigated. As seen, the credible interval is 

constructed using the PDF at the investigated time step (the furthest to the right) to 

indicate a lower and an upper bound. The PDF is theoretically underlying all the time 

steps, but it is shown only by this particular time step for illustration. The credible 

interval is defined by the upper and lower bounds. Depending on the level of credibility 

desired the difference between the lower and upper bounds can vary. 

The parameter importance (Williams, et al., 1995) is a relative mean to compare 

how wide the variations in each model input parameter are. These variations will 

eventually affect output parameters. An “important” parameter usually means the 

combination of two things: 

1. The model is very sensitive to variations in parameter values. 

2. There is more uncertainty in the input parameter. 

Either of the two or both would affect the population of the output parameter. A 

more “important” input parameter is likely to contribute to the uncertainty in output 

because of the inherited variations due to model sensitivities or uncertainties embedded in 

the parameter. 

One of the goals of this research is to estimate an unbiased representative of the 

population that addresses uncertainty. Hence, random sampling of important model input 

parameters is believed to be a good ground for an unbiased experiment (in this case, it is 

the linked models) that would result in a sample (output parameter values). 

The linkage proposed in this research is viewed as merging GSSHA and CE-

QUAL-W2 into one “experiment” (Figure  3-14). In statistical terms, an experiment 
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usually describes the process of drawing a sample (Miller, 2006). In a deterministic 

approach one value for each input parameter (out of the whole parameter population) is 

used as an input to the experiment. The “experiment” results in a “sample” which is a 

direct representation of the output parameter. Figure  3-14 is an illustration to the concept 

followed in developing the methodology for this research. It shows three major cases of 

sampling from a population: 

 

 

Figure  3-14: Sampling from a Population. 

� The experiment (sampling method) results in an un-biased stochastic sample 

because more than one row and column are represented. That can be 

considered a good representative of the population. As indicated in the 

previous chapter, additional sampling may result in a different sample and 

(A)

(B)

(C)
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hence a different mean (Figure  3-14, A). This highlights the process followed 

in this research to obtain an un-biased stochastic sampling. 

� The experiment results in a biased stochastic sample where the selected 

objects are all in the top row. That may be considered a bad representative of 

the population. It is important to examine why it is biased to avoid biased 

samples in future similar experiments (Figure  3-14, B). This research effort is 

designed to avoid a biased stochastic sampling. 

� The experiment results in a deterministic sample by selecting only one object. 

This sample can be biased and accordingly give misleading results (Figure 

 3-14, C). Unfortunately, this may or may not be a good representative of the 

population as this object may be an outlier (Figure  3-12). This highlights the 

deterministic approach currently used in WMS. 

In the “experiment” of this research, sampling (sample size = n) was done from 

the general input parameter population through stochastic GSSHA. The sample size “n”, 

was determined at the first step when we specified the number of runs for GSSHA. CE-

QUAL-W2 ran for the same number of runs and consequently generated an “n” number 

of output data sets. The “n” output data sets were used to build the output population 

distributions needed for credible intervals. 

As indicated in Chapter 2, a Bayesian approach was used in this research. The 

following is a list summarizing the subjective information used in this research: 

� Selecting “some” GSSHA variables. 

� Selecting a RANGE of values for these variables/parameters. 

� Linkage in itself is subjective. 
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� The fact that the GSSHA input parameters modeled stochastically will affect 

the “population” of the output parameter. 

� We apply the concept of “degrees of belief” in the sense that we accept the 

assumption that some distributions will be close to Normal or at least the 

normality, known variance underlying a particular sampling and frequency 

distribution, indicate that this distribution can be given a subjective 

interpretation. 

3.1.7 Parameter Selection    

Conceptually, the framework developed in this research is set so that all 

parameter sets in GSSHA can be simulated stochastically. The modeler, based on 

watershed information, parameter uncertainty and importance and the available computer 

resources, decides which parameters to consider stochastically. Obviously, more 

parameters modeled stochastically require more computing resources and/or more time 

needed for GSSHA to run the simulations.  

The framework is run-homogenous; i.e. each parameter selected for stochastic 

simulation would have the same number of runs with different values, based on the 

parameter. The number of runs is not parameter-specific but based on the total number of 

parameters considered stochastically especially if LHS is selected. 

It is important to determine which parameters to stochastically vary in the 

simulations. Parameter importance analysis, previous experience, knowledge of the area, 

previous models, or sensitivity analysis should generally be used to determine which 

parameters should have higher priority for stochastic treatment and which parameters can 

be used deterministically (Salah, et al., 2005-b). In the case studies tested in this research, 
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previous experience and knowledge of the area were used to determine the parameters 

used stochastically. 

Land use changes, ground water interaction and soil types could be considered, 

for example. By evaluating scenarios and defining the required accuracy level, the 

approach can be tailored and focused towards meeting the objectives of the modeler and 

enhance the process and reduce the overall simulation time. 

This probabilistic approach helps in representing the actual “population” of each 

stochastic parameter properly by selecting values from the pseudo-population of that 

particular parameter. This will help eliminate and quantify the uncertainty issues 

modelers usually have in representing a population of, for instance, initial soil moisture 

which varies greatly and has a major impact on runoff predictions (Downer, et al., 2006). 

Choosing a PDF that best represents each parameter (best pseudo-population) and 

selecting values from the designated PDF does not actually reduce uncertainty, yet, it 

accounts for it and helps address the resulting uncertainty in output (Salah, et al., 2005-b). 

3.1.8 Parameter Importance 

Normalizing the sensitivity of the model to a parameter by its uncertainty, results 

in a parameter importance value. Some parameters exhibit a large influence on model 

results, but at the same time, possess very low uncertainty and hence would have very 

low importance and therefore would not need to be modeled stochastically. As an 

example, most hydrologic models are very sensitive to small changes in water viscosity, 

however, there is almost always a very low uncertainty associated with viscosity values 

of water. Hence while models might be very sensitive to viscosity, viscosity has a 
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relatively low importance compared to other model input parameters (Williams, et al., 

1995). 

One of the major enhancements in the parameter selection proposed in this 

research is addressing the importance of each parameter. Parameters that are found to 

exhibit large influence on the model are not necessarily important in the simulation. 

When a model is said to be sensitive to changes in some parameters, then these 

parameters usually exhibit large influence on the model. For example, the model may be 

sensitive to a change in value, but they are well known so there is little uncertainty in this 

value, thus the parameter is considered “less important” (Williams, et al., 1995). 

In this case, the PDF used to define the stochastic values of this model would not 

be as wide as other parameters that might exhibit a higher importance.In summary, the 

linkage (Figure  3-15) is organized in 4 phases: 

1. Phase I: Stochastic GSSHA 

• Step 2: involves the stochastic input to GSSHA 

• Step 3: running GSSHA stochastically 

• Step 4: flux files are generated. 

2. Phase II: GSSHA/CE-QUAL-W2 link 

• Step 1: spatial linkage where a segment ID index map is generated. 

• Step 5: temporal linkage where the flux files are broken down. 

3. Phase III: Stochastic-Driven CE-QUAL-W2 

• Step 6: when CE-QUAL-W2 runs multiple times, each using a newly 

modified run-specific control file, and a specific set of input files for 
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the specific run and a static bathymetry file (and if applicable other 

input files).  

4. Phase IV:  Stochastic Output 

• Step 7: multiple CE-QUAL-W2 outputs are read into data sets into 

WMS. 

• Step 8: a gage is generated in WMS at a desired location in the water 

body profile and a time series plot, with credible interval, is generated. 

3.2 Software Development 

This section presents the software development to implement the conceptual 

framework outlined above. As mentioned earlier, the primary software program that is 

used in this research is WMS (Nelson, 2008). WMS has existing model interfaces for 

GSSHA and CE-QUAL-W2 and it is used in two ways: 

� As a platform to implement the required linkage of the two models and 

enhancements to the existing interfaces to be able to utilize the tools, and 

� A tool for analyzing and testing the developed tools for the case studies. 

By linking GSSHA and CE-QUAL-W2 we can create multiple scenarios that can 

run to develop a range of probable results. The WMS drainage coverage is used to 

delineate watersheds and sub-basins with associated land use and soil coverages to define 

the different activities within the watershed. A GSSHA model is built for the watershed 

to best model the land portion of the watershed. Feature polygons; i.e. branch and 

segment coverages, can be used to represent water bodies in a CE-QUAL-W2 model. By 

integrating these processes directly through the conceptual model, the linkage between 
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GSSHA and CE-QUAL-W2 can be defined spatially and temporally (two dimensional 

grids of GSSHA surrounding lakes/river polygons automatically linked to CE-QUAL-W2 

water bodies) (Figure  3-15) and (Figure  3-16) which is the basis of this research. 

 

 

Figure  3-15: Overall Conceptual Framework. 

The more accurate the supporting data, such as soil and land use, the more reliable 

is the output. With respect to software development, and consistent with the conceptual 

framework outlined above, this research is divided into four phases: 
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4. The aggregation of results and post processing.

Figure  3-16

3.2.1 Phase I: Stochastic GSSHA

In phase 1, called the “s

stochastically. This phase involves two main stages:

1. GSSHA input parameter selection, and 

2. Statistical simulation: this involves the simulation technique and the selection 

of the most appropriate PDF to rep

pseudo-population). Most of the time, the modeler selects the PDF during the 
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Updating the GSSHA interface in WMS to incorporate stochastic modeling,

Linking GSSHA to CE-QUAL-W2 for a single case (i.e., single GSSHA 

output aggregated to be the input for a CE-QUAL-W2 model), 

Upgrading the link to include all the stochastic runs from GSSHA into CE

in what is called the “stochastic-driven” phase. 

The aggregation of results and post processing. 

 

 

16: Conceptual Linking of GSSHA to CE-QUAL-W2.

Phase I: Stochastic GSSHA 

In phase 1, called the “stochastic GSSHA”, GSSHA parameters are considered 

stochastically. This phase involves two main stages: 

GSSHA input parameter selection, and  

Statistical simulation: this involves the simulation technique and the selection 

of the most appropriate PDF to represent each parameter (i.e., creating the 

population). Most of the time, the modeler selects the PDF during the 

face in WMS to incorporate stochastic modeling, 

W2 for a single case (i.e., single GSSHA 

W2 model),  

Upgrading the link to include all the stochastic runs from GSSHA into CE-

 

W2. 

tochastic GSSHA”, GSSHA parameters are considered 

Statistical simulation: this involves the simulation technique and the selection 

resent each parameter (i.e., creating the 

population). Most of the time, the modeler selects the PDF during the 
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modeling process. Other distributions, like Normal, Log-Normal, Beta and 

user defined distributions have been identified and incorporated in the WMS 

interface to give modelers some flexibility. Most of the time, however, the 

hydrologic parameters are found to follow Uniform, Normal, Log-Normal or 

Beta distributions (Clarke, 1994). 

A dialog (Figure  3-17) is developed to enable modelers to choose a set of 

parameters and the associated PDFs. It also enables modelers to choose the method of 

sampling the PDF and the number of GSSHA runs desired. In this dialog, modelers do 

not necessarily have to choose PDFs for all parameters, but only the ones they think are 

most important. 

Modelers can add or delete parameters to be stochastically represented. Default 

values (Table  3–2) for the mean, minimum, maximum and standard deviation are 

populated automatically. As indicated earlier, the simulation method used is the Monte 

Carlo Simulation whereas the sampling, from the PDF, is random, LHS or user defined. 

Modelers can re-populate runs with new sampling values or edit the individual values for 

each of the fields in the dialog. 

As shown in this dialog, modelers determine the number of simulations, which are 

also considered the “sample size”. This value depends on the selection method used to 

sample values from the PDF. For example, if the LHS is selected, the modelers have no 

direct control on the number of simulations. Instead the number of simulations is 

determined by the number of instances and the number of the stochastic parameters 

selected in this dialog. The number of instances in this case represents the number of 

equal areas sub-sections of the respective distribution is divided into. The total number of 
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simulations in this case is the product of the number of sub-sections for each parameter. 

Therefore, if capillary head has “A” sub-section and hydraulic conductivity has “B” sub-

section, the total number of simulations is A× B. 

The dialog shows each stochastic parameter with a key value (Figure  3-18, A) 

which must always be a negative integer. This key is used in the standard input file 

within the GSSHA interface in WMS (Figure  3-18, B). That way, WMS and GSSHA 

would model it stochastically by using one of the listed values from within the dialog. 

These non-unique keys can be used by multiple parameters.  

 

 

Figure  3-17: Stochastic GSSHA Dialog. 

Default values (Table  3–2) for the parameters have been estimated based on the 

common range of values. The parameters names are designed to be unique; i.e. WMS 

does not allow duplicate keys. 

Concurrent research efforts and GSSHA model data requirements (Byrd, et al., 

2005) identified key input parameters that were found to be most important to the model 
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in a lot of applications. These parameters may include, but are not limited to, the 

following: 

� Capillary head, 

� Hydraulic conductivity, 

� Initial moisture conditions, 

� Manning roughness,  

� Porosity,  

� Surface Albedo, 

� Interception Coefficient, 

� Rainfall. 

 

Figure  3-18: Stochastic Parameter Handling in GSSHA. 

Table  3–2: Default Values, Minimum and Maximum, for Stochastic Parameters. 

Parameter Units Min Max Standard Deviation 

Capillary Head cm 10 1000 150 

Hydraulic Conductivity cm/hr 1e-10 100 20 

Initial Moisture -- 0.01 0.99 0.15 

Manning’s “n” -- 0.005 0.500 0.10 

Porosity -- 0.10 0.70 0.10 

Precipitation mm 10 200 25 
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In this research, parameter selection is assumed to be based, solely, on the choice 

of modelers, as opposed to a pre-defined set of parameters. This is assumed because an 

important parameter for model A is not necessarily an important parameter for model B. 

Uniqueness of models and conditions forces modelers not to use preset or universal 

conditions. The framework developed in this research demonstrates the ability to model 

watersheds in an integrated scheme. However, it is important to realize that this 

framework, like other modeling efforts, has limitations and cannot be universally applied.  

Once the modeler has identified which parameters will be modeled stochastically 

and has identified the associated model parameters, WMS will help with automating the 

GSSHA runs. In order to facilitate the researched methods, a tool to have WMS generate 

two additional files which are the parameter and value files, in addition to the regular 

project files. The parameter file lists all the parameters that are stochastically modeled 

whereas the value file lists all the associated values that are actually available and 

editable in the Stochastic GSSHA dialog (Figure  3-17).  

The stochastic dialog provides input for these two files: (Figure  3-19): 

1. Parameter File, 

2. Value File. 

These files are used by GSSHA to run in stochastic mode. The two files will be 

created and saved with the GSSHA project file once the modeler saves out the GSSHA 

project. The “Save GSSHA Project File” dialog has multiple tabs that handle each 

individual file category.   In addition, a third file is indicated and saved. This 

“siminput.txt” enables modelers to reload the parameters and their values when the 
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project is re-opened. Figure  3-20 show an example of a GSSHA project file. The project 

file is divided into four main sections: 

1. Introduction: includes the title and any additional remarks 

2. Batch Mode: includes where the parameter and value files are saved (Figure 

 3-20, A). This section is optional and is not required by GSSHA for a 

deterministic run. 

3.  Regular Input: includes the default input values for the run. 

4. GSSHA to CE-QUAL-W2: includes the flux file, Segment ID index map and 

the stream nodes file (Figure  3-20, B). This section is optional and not 

required by GSSHA for a stand-alone GSSHA run; i.e. not linked to CE-

QUAL-W2. 

 

 

Figure  3-19: Value and Parameter Files Example. 

The flux file is the GSSHA output that compiles the output to each individual 

segment for each time step. The flux file is the file that will be broken down to individual 

CE-QUAL-W2 input files for each segment. The stream nodes file is another GSSHA 

output that compiles the streams input to the water body on all the nodes selected by the 

modelers. This file may not be generated if the modeler elects to not model streams in 
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GSSHA. Contrary to these two files, the index map is the only file in this section that is 

not a GSSHA output, rather it is a GSSHA input built on the CE-QUAL-W2 model. 

 

 

Figure  3-20: Sample GSSHA Project File. 

All of the five files indicated in the above two cards must be present in their 

respective locations for a successful stochastic GSSHA run that is linked to CE-QUAL-

W2 and obviously a stochastic version of GSSHA is needed to run in batch mode. 

3.2.2 Phase II: GSSHA / CE-QUAL-W2 Link 

In this section, the term “GSSHA output” will be used to refer to both water 

quantity and quality. However, the current version of GSSHA (v4.3C) does not have an 
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extensive water quality module (Downer, et al., 2006). For this reason, this research 

focuses on GSSHA water quantity output only. However, the methodology developed is 

parameter-independent and can be applied to water quality constituents as well, once a 

robust nutrient module is developed in GSSHA. 

GSSHA output is used to incorporate the inflows to CE-QUAL-W2 as a flow 

tributary inflow file (*_qtr.npt). A tributary inflow file is where modelers can specify 

what additional input is contributing to the receiving water body either through a stream 

inflow or direct from GSSHA cells. GSSHA is designed to generate one tributary inflow 

file for all segments and the linkage is designed to break this file into individual segment 

files. Once the GSSHA nutrient module is in place, a constituent tributary inflow 

concentration file (*_ctr.npt) and temperature (*_ttr.npt) (Cole, et al., 2007)  can be 

generated and incorporated in the analysis as necessary. 

 

 

Figure  3-21: Flux Files Generated by GSSHA. 

There are two features required for the link between CE-QUAL-W2 and GSSHA. 

The first feature is a direct feature of the spatial linkage. This is to create an index map of 
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all the segments in the CE-QUAL-W2 model. The index map should be created using the 

same grid cell size of the GSSHA model. This cell size restriction is essential to establish 

the linkage properly. This feature is programmed as an item in the CE-QUAL

in WMS. As indicated in Figure  3-20, the segment ID index map must be generated 

before GSSHA runs. It is necessary for GSSHA to map the necessary files for the link.

 

Figure  3-22: Flux File Break Down. 

 

The second feature serves both the spatial and temporal linkages and it should 

come at a later stage of the modeling process. This feature de-aggregated 

and breaks it down to multiple CE-QUAL-W2 input files. These 

files are broken out by segments (Figure  3-22).  

flux file is shown in Figure  3-21, the first row in the file shows the 

segment numbers (based on the index map), and the first column shows the time steps

(based on GSSHA time steps). Figure  3-22 illustrates how a flux file is broken into 

W2 input files; i.e. one for each segment. 

W2 model. The index map should be created using the 

same grid cell size of the GSSHA model. This cell size restriction is essential to establish 

QUAL-W2 menu 

, the segment ID index map must be generated 

necessary for GSSHA to map the necessary files for the link. 

 

The second feature serves both the spatial and temporal linkages and it should 

aggregated the generated 

W2 input files. These 

, the first row in the file shows the 

segment numbers (based on the index map), and the first column shows the time steps 

illustrates how a flux file is broken into 
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As mentioned earlier, the linkage is divided into two main levels: 

1. Spatial linkage: The CE-QUAL-W2 segment coverage (Figure  3-23) in WMS 

is used to build a GSSHA segment IDs index map (Figure  3-24). Any GSSHA 

grid cell that is not overlaid with a segment polygon is given an index of zero, 

otherwise it is given the segment ID it is overlaid by. This way, a water body 

boundary is determined by the fact that any flow coming from a zero-valued 

cell to any non-zero-valued cell is a flow from GSSHA to CE-QUAL-W2 

water body. The CE-QUAL-W2 segment index map tool, developed in this 

research, creates an index map for each CE-QUAL-W2 segments in the 

segment coverage. Before a CE-QUAL-W2 segment index map is created in 

WMS, all segments are checked to determine if they are mapped to CE-

QUAL-W2 branches. On the other hand, branches are checked to see if each 

branch has at least one segment assigned.   

The first step in generating a Segment ID index map is done in the WMS interface 

for CE-QUAL-W2. The WMS interface checks to see if there is a GSSHA grid that 

covers the segment coverage in CE-QUAL-W2 and then generates the GSSHA index 

map. It also checks to see if both branch and segment coverages are already defined and 

if a CE-QUAL-W2 model is already initialized.  

As noted in Figure  3-24, we can see a GSSHA grid overlaying a polygon feature 

that represents a lake. The spatial linkage is manifested by the following features: 

� Zero-valued cells indicating cells that are not within the water body. 

� Non-zero based cells which are within the water body boundary. Values of 

these cells represent the Segment ID that the cell lies within.  
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Figure  3-23: Segments in a CE-QUAL-W2 Model. 

 

 

Figure  3-24: Spatial Linkage, Segment ID Index Map. 

� Water body arc which is the water body boundary as modeled by the CE-

QUAL-W2 branch and segment coverages. 
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Major streams out falling in the water body are modeled through the stream 

nodes file. The stream node file (Figure  3-25) defines what “Link” discharges 

into which segment in the CE-QUAL-W2 model.  

 

Figure  3-25: Link-Node-Segment Map. 

Temporal linkage: the temporal linkage is done through various time steps. 

generated flux files (Figure  3-21) at the specified cells at the 

 is then computed and aggregated for CE-QUAL

22). In this research, a tool that converts this output to the 

format the respective CE-QUAL-W2 input file requires (i.e. 

concentration and temperature).   

Major streams out falling in the water body are modeled through the stream 

what “Link” discharges 

Temporal linkage: the temporal linkage is done through various time steps. 

at the specified cells at the 

QUAL-W2 

tool that converts this output to the 

input file requires (i.e. inflow, 
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In Summary, the linkage, so far, is done at two interdependent fronts: 

1. WMS: Index maps are generated based on the segment IDs and passed to 

GSSHA. At the same time stochastic values for a set of modeler-chosen 

parameters are passed to GSSHA in the parameter and values files. 

2. GSSHA: GSSHA generates fluxes aggregated by segment. There are some 

additions in the GSSHA code to help the data input and output interchange 

smoothly. 

If both phases are implemented correctly, a number of flux files, equal to the 

number of simulations (sample size), will be generated.  Similarly, the stream inflow files 

are used as the major contributing flows from stream network (if modeled in GSSHA). 

These files are the basic building block for the following phase. 

3.2.3 Phase III: Stochastic-Driven CE-QUAL-W2 

This phase is referred to as the stochastic link where multiple GSSHA outputs 

generate multiple input files for CE-QUAL-W2. Once the spatio-temporal and data 

linkage is developed in phase II, the interface is ready for multiple CE-QUAL-W2 runs 

for the same model, based on the stochastic inputs to GSSHA. The multiple GSSHA runs 

generated by the stochastic values for GSSHA parameters are used to generate some of 

the input files required by CE-QUAL-W2. At the end of a stochastic GSSHA run, 

GSSHA generates a set, equal to the number of runs selected by the modeler, of segment 

flux files which contain the water quantity input required by CE-QUAL-W2. Each one of 

these files is broken down to multiple files that will be used by one CE-QUAL-W2 run 

(Figure  3-26). 
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Figure  3-26: Stochastic-Driven CE-QUAL-W2. 

As indicated in section 3.1, the bathymetry file does not change for different CE-

QUAL-W2 runs. This is because the stochastic runs do not alter any of the input 

parameters of the bathymetry file. In the same process the original CE-QUAL-W2 

control file is copied multiple times, equal to the number of runs, in separate sub-folders. 

Once copied, each control file is modified to reflect the changes pertinent to the 

stochastic input and the newly generate input files. Each of these sub-folders becomes a 

separate CE-QUAL-W2 run that will eventually contain the CE-QUAL-W2 output.  

The control file may have small changes that correspond to the changes occurring 

in the model based on the stochastic inputs. The main difference in the control file is the 

different path of the input files. So, it is basically multiple control files and single 
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bathymetry file, in addition to the multiple tributary inflow files. This defines multiple 

runs of CE-QUAL-W2. 

WMS modifies the control file, specifically the absolute paths of the other input 

files. The broken down flux files are written out in their respective run sub-folder; e.g.:  

� C:\...\Parent Folder\Run_0002\w2_seg2.npt, 

� C:\....\ Parent Folder\Run_0002\w2_seg3.npt, 

�  …etc. All other input files are saved in the parent folder (e.g.,   C:\...\Parent 

Folder\bth.npt). 

This phase is the most time-consuming phase of the linking process in terms of 

implementation and model run time. Depending on the size of the watershed, grid cell 

size, number of segments/branches, and the accuracy needed, a complete stochastic run 

can take a relatively long time (Section 3.3). As indicated in the following chapter, 

modelers in some cases have to increase the grid cell size and/or do some other model 

simplifications, at least at the initial stages, to produce a reliable model.  

The distributed version of CE-QUAL-W2 comes with a simple status dialog that 

gives interactive summary information about the run (Cole, et al., 2007). For the purpose 

of this research, using the dialog would not be efficient, as modelers would not want to 

manually initiate numerous instances of the dialog for each run. Additionally, there is no 

reason to duplicate the CE-QUAL-W2 executable multiple times in each sub-folder of the 

runs. 

Alternatively, a generic CE-QUAL-W2 executable was compiled that could be 

called directly from WMS to execute the model. The executable is saved with the other 

WMS model executables. As part of this research, the source code was programmatically 
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modified, compiled and linked using FORTRAN 90 to take an argument which is the 

control file full path. That way, the executable could be called multiple times, and passed 

the full path of the respective control file, for each CE-QUAL-W2 run without any 

redundancy. Based on that, modelers can run CE-QUAL-W2 from within WMS either for 

one run or for stochastic runs. 

3.2.4 Phase IV: Stochastic Output 

After a successful completion of the runs, WMS reads the CE-QUAL-W2 

solution files equivalent to the number of runs/simulations that are saved in the sub-

folders as indicated in Figure  3-26. For a stochastic solution, the interface requires the 

path of the parent folder, containing all of the sub-folders for all the runs, as opposed to 

the full path of the CE-QUAL-W2 output file (as is the case for a deterministic solution). 

For each solution to be read, a longitudinal profile needs to be created first. Each branch 

of the CE-QUAL-W2 will have a profile showing the segments and layers which will be 

later used to display contours of the constituent analyzed.  

Each solution is used to generate a dataset for the selected constituent(s) provided 

that these constituents are simulated in the CE-QUAL-W2 run. All the read datasets are 

used to estimate the credible interval (i.e. lower and upper bounds). The level of 

credibility is determined by the user (Figure  3-27). As indicated in the previous chapter, 

the higher the credible level, the more confident modelers are in the results and the wider 

the interval is.  

All the generated datasets, from the multiple runs, and the selected credible 

interval are used to generate three additional data sets: 
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1. Credible interval lower bound. 

2. Mean.  

3. Credible interval upper bound. 

These generated datasets will be utilized to build the stochastic time series. The 

width of the credible interval is a direct function of the desired credibility. Higher 

credibility generally results in a wider range and vice versa. 

 

 

Figure  3-27: Credible Interval Dialog. 

In summary and in light of the overall modeling process in WMS (Figure  2-2), 

batch runs (Figure  3-15) are planned to comprise the four following ordered steps: 

1. Running GSSHA stochastically to generate multiple outputs. 

2. Aggregate GSSHA output which produces multiple input files equivalent or 

less than the original number of runs.  

3. Run CE-QUAL-W2 stochastically. 

4. Display the outputs of CE-QUAL-W2 on longitudinal profiles and/or time 

series plots of the water body.  
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4 Results 

The developed approach is an original effort to integrate a land surface model and 

a water model into a stochastic integrated modeling environment in order to address the 

uncertainty from both water quantity and quality perspectives. It contributes to the 

integrated water resources modeling by providing a tangible tool, and at the same time 

addresses uncertainty, which is not given the due attention in current practice. This 

approach has some advantages to similar integrated water resources modeling 

environments in a GIS context. As seen later in this chapter, the developed approach has 

shown some noticeable advantages in the overall modeling process. 

4.1 Integrated Water Resources Modeling 

The main advantage of this approach, as far as the integrated water resources 

modeling is concerned, can be summarized as follows: 

1. Most integrated models are not stochastic and stochastic models are not 

integrated. 

2. The strength of statistical simulation overcomes the lack of data. In most 

cases, modelers do not have values for all the parameters required by the 

model. What is even worse is that modelers do not have 100% certainty, or 

even close, for some of the values of these parameters. Even if modelers are 
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certain of a specific value, it might not be the best value to represent the 

population of that parameter in a particular location at a particular point of 

time. The statistical simulation allows for the selection of the parameter values 

from the given PDF and simulating the model multiple times would produce 

outputs that incorporate uncertainty and credible intervals as opposed to a 

rigid single answer that is suspect because of uncertainty. 

3. This approach is scalable in time, space, parameters and tools.  

• The time domain of the model can expand depending on the available 

computing resources and the accuracy needed. This means modelers 

can use a larger duration of the model to simulate and/or reduce the 

time step to capture changes in model output that would not be 

captured by a “coarser” temporal resolution. 

• Similarly, the spatial context of the model could be enhanced. Finer 

resolution could be used to address more detailed and localized issues 

if needed and data are available. 

•  Grids can be rectilinear, or what could be referenced as “smart grids”, 

to reduce data requirements as possible. More parameters can be used 

to demonstrate the stochastic nature in modeling. 

• Also, more statistical simulation techniques such as dynamic 

simulations can be used as opposed to the one used (even though there 

are two sub groups of parameter selection). Also the available PDFs 

can be expanded to encompass a wider selection of distributions that 

might provide a better fit to certain parameters. 
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4. Automating the separate steps (i.e. pre-processing of data, aggregating 

information) saves time especially for repeated model trials. 

5. The proposed system is ideally suited for TMDL studies, UAAs, and to model 

point and non-point source pollution simultaneously. 

4.1.1 Land-Water Interface 

The two models, GSSHA and CE-QUAL-W2, are used interactively to generate a 

complete integrated run for the interface between the land and water portions of the 

watershed. Some GSSHA parameter values are picked from a PDF or PMF for 

continuous and discrete parameters respectively. This produces a PDF for the output 

constituent under investigation (or outflow) as opposed to single value at each time step. 

Moreover, this generated PDF is time and location-dependant.  

If a time series is needed, the third dimension in Figure  4-1 can be represented as 

time (as opposed to different scenarios) and the PDF would rather be a PDS. 

Because each PDF is time, parameter and location dependant, the PDS (Figure 

 4-1) varies along the third dimension time or scenarios. The PDS can be considered 

discrete or continuous. A PDS is considered continuous if values between the component 

PDFs are feasible and they can actually be used to represent parameters at the specific 

time, parameter and location.  

4.1.2 Scenario Development 

The developed approach can easily be used in a scenario development where 

some of the parameter values can be manually entered as opposed to selection from a 

PDF, based on a specific scenario. This is referred to as a low level scenario development 
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which is primarily meant to incorporate some land use/management changes to see how 

that would affect the overall objective of the study at hand. High level scenario 

development is when statistical simulations take place in developing the scenarios 

themselves. Typically, the scenarios depend largely on the overall objective of every 

unique study. 

 

 

Figure  4-1: A Probability Density Surface.  

4.1.3 Cascaded Reservoirs 

In some cases, a watershed might have two (or more) reservoirs inter-connected 

by a river. This system is sometimes referred to as cascaded reservoirs (Figure  4-2). This 

is an added sophistication to the approach outlined above.  However, a sophisticated 

system like this can still be modeled, using the developed approach, with greater 

computational power to reduce the time needed for a successful and complete linked run. 
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Cascaded reservoirs are a common feature of the watershed hydrology where 

reservoirs A or B (Figure  4-2) can either be man-made or natural. An example of this is 

the Eau Galle watershed.  

 

 

Figure  4-2: Cascaded Reservoirs Modeling, A and B. 

4.1.4 Statistical Distribution  

The default statistical distribution used throughout this research is Beta 

distribution. To evaluate if using Beta distribution would be different than using Normal 

or Log-Normal distributions, I compared Beta distribution to both the Normal and the 

Log-Normal distributions. This comparison was done using raw values generated from 

WMS before it was used to run GSSHA stochastically Table  4–1. In addition, the 

comparison was done to compare GSSHA output as a result of both distributions. Both 

comparisons are made to track the difference from the raw data to model output.   

Values were generated for four GSSHA parameters; i.e. hydraulic conductivity, 

capillary head, initial moisture and manning’s n, using three statistical distributions; i.e. 

Normal, Log-Normal, and Beta (with shape factors of 2, 7) in WMS. Each set of values 
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was pair-wise compared to another set using simple linear regression analysis. These 

comparisons indicated how different the distributions were at the input level (Table  4–1). 

Table  4–1: Statistical Distribution Comparison – GSSHA Input. 

Parameter 

p-Value 

Beta
*
 

vs 

Normal 

Beta
*
 

vs 

Log-Normal 

Normal 

vs 

Log-Normal 

Hydraulic Conductivity 0.597 0.436 0.067 

Capillary Head 0.199 0.218 0.248 

Initial Moisture 0.576 0.266 0.383 

Manning’s n 0.403 0.764 0.104 

      * Shape factors of 2, 7. 

This research aimed at looking at the stochastic input, as well as the effect of 

various stochastic distributions on the output. Thus it was important to verify that the 

used parameter values, generated by different distributions, are different. Table  4–1 

indicates that there is strong evidence that hydraulic conductivity stochastic values 

generated from a Beta distribution are different from stochastic values generated from a 

Normal distribution (p-Value = 0.597). Similarly, there is strong evidence that stochastic 

values generated from a Beta distribution are different from those generated from Log-

Normal distribution (p-Value = 0.436). Also, there is evidence that stochastic values 

generated from a Normal distribution are different from those generated from Log-

Normal distribution (p-Value = 0.067). Even though the differences are imperative (since 

different distributions are used) we could see from Table  4–1 that using different 

distributions has a different effect on different parameters. For example, the p-Value 

comparing Normal and Log-Normal for Initial Moisture (0.383) is significantly higher 

than for the Hydraulic Conductivity (0.067). 
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Similarly, stochastic values generated by Beta distribution are different from 

those generated by Normal and Log-Normal distributions for capillary head, initial 

moisture and manning’s n (Table  4–1). 

In addition to comparing distribution at the raw data level, Beta and Normal 

distribution values were both used in separate GSSHA runs and the flux files were 

compared to see if stochastic runs using these two distributions would result in similar 

flux files. For this comparison, GSSHA fluxes resulting from Beta distribution raw values 

for each run for all segments are stacked to be statistically compared, using t-tools, to the 

equivalent list resulting from normally distributed raw values (Table  4–2).  

Table  4–2: Statistical Distribution Comparison – GSSHA Output. 

 
CE-QUAL-W2 Segment 

2 3 4 5 6 7 8 

p-Value 0.321 0.149 0.965 0.951 0.275 0.684 0.893 

     

High p-values in Table  4–2 indicate that there is no reason to believe that both 

distributions produced different flux files for all the seven segments of Eau Galle 

Reservoir. 

Based on what we see on this analysis, it looks like the choice of the statistical 

distribution (i.e. Log/Normal, Beta) to represent the hydrologic input parameter values 

for GSSHA is not likely to affect the stochastic output substantially, especially the output 

used in generating CE-QUAL-W2 input. This may be explained by Normal distribution 

tails and outliers. In a Beta distribution tails are not unlimited. It must be noted, however, 

that this conclusion is valid for the above shape parameters of Beta distribution. Other 

research findings (Ashkar, et al., 1998) indicate that the choice of statistical distribution 
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becomes critical when working with extreme values. Also, this analysis indicated that 

Beta distribution, through the use of shape factors, can be used to approximate normal 

and log-normal distributions. 

4.1.5 Spatio-Temporal Uncertainty 

Another major accomplishment in this framework is the ability to address 

uncertainty. The flexibility to report the output, either a time series or a constituent 

profile, on a credible interval or the median (current approach) adds to it. Modelers can 

still view a “one line” representation of a time series the same as with current techniques 

or better yet, display the range of values (Figure  4-3) and (Figure  4-13). Similarly, the 

final longitudinal profiles of CE-QUAL-W2 would have ranges of regions that, exceed 

water quality standards using the specified credible interval.  

 

 

Figure  4-3: Temperature from Sample Run for Lake Zapotlan (95% CI). 

For time series, instead of having a single value of the constituent under 

investigation, whether a pollutant concentration or flow of water, each time step has a 
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range of values of minimum and maximum and a median, based on a certain credible 

interval. In that sense, modelers would be able to say that at a specific time step, there is a 

95%, for instance, chance of having the value lie between the indicated lower and upper 

bounds (Figure  4-3).  

The result of the linkage process is multiple data sets of the parameter(s) under 

investigation. These data sets are typically used to generate a time series plot of a 

parameter at a point of interest, for instance water withdrawal location from a reservoir. 

The population distribution that can be generated in the process at each time step can 

actually be used to draw a different inference. As an example, the generated time series 

may be used to infer that there is, for example, a 10% probability that the value of the 

parameter at certain time step/location will exceed a given concentration. This 

concentration can be the water quality standard or any other arbitrary threshold the 

modeler or decision maker has previously set. 

In a selective withdrawal scheme, multiple time series plots can be generated 

along with the associated probabilities. This will result in a relative comparison of the 

different withdrawal locations out of the reservoir. In turn, this leads to a more 

informative decision of which withdrawal location in the withdrawal tower to use and 

which time step is the most suitable. 

4.2 GSSHA / CE-QUAL-W2 Link  

The two model domains with their strong underlying numerical representations of 

both the land and water have been linked in a GIS context. A two dimensional plenary 

grid (GSSHA) is efficiently linked to another two dimensional, but longitudinal, grid 

(CE-QUAL-W2). 
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4.2.1 Interface  

Mapping/disctretizing one domain to the other is done from a horizontal two 

dimensional model to a vertical two dimensional model (Figure  3-1). This process can be 

generalized to any other set of models. Thorough understanding of the two model 

domains is essential in customizing this approach for other sets of models. The continuity 

of “manual” data dissemination between various models is a tedious and difficult task, 

especially if the process is bidirectional.  

This research effort shows how WMS, as a common platform, utilizes pre-

existing tools and functionalities to automate this interface and facilitate the linkage 

process. 

As seen in Figure  3-18, a simulation input file is generated along with the 

parameter and value files. This file allows users to reload the stochastic parameters and 

their values used in the previous simulation. Re-populating the runs or selecting other 

distribution/settings will change these values. However, these changes will not be saved 

until the GSSHA project is saved. 

To run GSSHA in the batch (stochastic) mode, a “-b”, appended by the total 

number simulations, must be added to the command line used to execute the stochastic 

version of GSSHA. This is implemented in GSSHA’s interface in WMS. 

The FORTRAN code of the generic version of CE-QUAL-W2 is used and 

modified programmatically to generate a model executable that could take arguments, 

specifically the full path of the control file name. The newly generated executable is used 

in WMS to run CE-QUAL-W2 from within WMS. This is meant to facilitate running the 

model especially in the batch run mode where modelers had to manually run the stand-
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alone version of CE-QUAL-W2 multiple times. Two CE-QUAL-W2 executables are 

created for the two versions of 3.2 and 3.5. 

According to the specific case of the GSSHA, CE-QUAL-W2 and the 

methodology ( 3.1.4), WMS breaks down flux files so that each segment flux file has a 

start and end Julian dates that matches those specified in the main model control file.  

4.2.2 Batch Runs 

The batch runs facilitate the modeling process and reduce the time taken to run all 

simulations. In addition, it helps in automating the process which is, in most cases, 

considered a major advantage in a repeated model run environment. To automate the 

linkage, the following are achieved:  

� CE-QUAL-W2 can be run directly within WMS.  

� CE-QUAL-W2 executable and graph.npt are both saved in the same folder. 

� W2_con.npt may be located in a separate path. 

4.2.3 Modeling Guidelines  

In the event that back water exists (i.e., water that is flowing outside the water 

body) or in other words water is flowing from CE-QUAL-W2 water bodies to GSSHA 

cells, modelers are warned to re-set their boundary conditions and/or refine their GSSHA 

model. The linkage must be redefined because, currently, this negative flow is ignored 

and not factored into the model linkage. This research handles negative fluxes this way 

because; a negative flux could mean one of two things: 

1. An issue in the real world that needs to be looked at closely or  

2. A problem with the mathematical representation of the real world.  
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Fixing and/or refining the model and its boundary conditions should, in most 

cases, eliminate the negative fluxes. If it does not and a negative flux is actually predicted 

repeatedly, then some other flooding-specific model should be used for this particular 

area. 

4.2.4 Modeling Limitations  

Like any modeling process, there are some assumptions and limitations that are 

associated with this approach. These assumptions can be listed as follows: 

� There is only one static simulation technique assumed; i.e. Monte Carlo 

Simulation. 

� The approach has limited number of stochastic variables in GSSHA. These 

variables are set to follow certain distributions (with a default of Beta 

distribution). 

� The approach works well with equal sized grid cells. However, it can be 

expanded to work with irregular (smart) grids if needed in the future. 

� Whenever a test of containment is needed, the cell centroid, as opposed to the 

entire cell, is used to test if the cell lies within or outside a given polygon (in 

this case, CE-QUAL-W2 segment polygon). 

� The aggregation of cells is done with the help of extending the segment 

boundary to intersect the cell. 

� The importance of a variable is used as opposed to sensitivity of the model to 

it. 

� It is assumed that all the inflow from GSSHA cells is contributing to the top 

layer of each segment in the CE-QUAL-W2 model. This is assumed 
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indicating that the major process in the transition of water from land to water 

portions of the watershed is done through overland flow (surface water) as 

opposed to sub-surface/ground interaction. None of the overland flow is 

assumed to be distributed through the vertical profile of a segment.  

� The linkage is designed to be a quasi 2-way interaction between the two 

models. A input; i.e. segment ID index map, is required by GSSHA when at a 

later stage, an output from GSSHA is used as input to CE-QUAL-W2. 

� The stochastic input is attenuated from GSSHA to CE-QUAL-W2. Water 

surface elevations might show it a little better. 

4.2.5 Compatibility and Expandability 

Most models undergo continuous development and updates. It is expected that 

GSSHA will have a comprehensive nutrient module. Likewise, CE-QUAL-W2 is 

expected to have further modifications in the future. Some of the planned enhancements 

(Cole, et al., 2007) for CE-QUAL-W2 include sediment diagenesis and a three 

dimensional version among other enhancements. For the linkage to perform the way it is 

currently intended for, there are some steps to account for: 

1. CE-QUAL-W2 Executable: As updates occur and new versions are available 

for use, new CE-QUAL-W2 model executables and the corresponding graph 

input file must be generated and distributed to WMS users. The executable is 

generated by modifying the code distributed with the generic version of CE-

QUAL-W2. The modification should enable command line argument; i.e. the 

full path of the control file name. Currently, the generic version of CE-QUAL-
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W2 is programmed using FORTRAN-90.  This way, WMS can call this 

executable and run it multiple times. 

2. CE-QUAL-W2 Control File: WMS creates a control file that is compatible 

with CE-QUAL-W2 v.3.2. Differences between v. 3.2 and v.3.5 (Cole, et al., 

2007) are minimal and include few lines of text. It must be noted that v. 3.5-

compatible control files are still readable by WMS. Currently, WMS 8.1 is 

distributed with the two CE-QUAL-W2 versions; i.e. 3.2 and 3.5, along with 

the appropriate graph input file. For example, if a newer version of CE-

QUAL-W2 is released, modelers would have the choice of modeling their 

watershed with v. 3.5, or have WMS generate the 3.5-compatible control file 

and edit it manually. Alternatively, a new CE-QUAL-W2 executable should 

be generated and distributed to users. Furthermore, modifications in WMS to 

generate a control file that is compatible with the new version usually can be 

obtained from CE-QUAL-W2 manual; i.e. differences between versions 

(Cole, et al., 2007).  

3. GSSHA: A GSSHA executable capable of running in the batch mode, as 

indicated earlier, must be available. This version must be able to utilize a 

segment ID index map, stream inflow file and both value and parameter files 

to generate the flux files for the number of runs corresponding to the value 

file.  

Any parameter that is modeled in CE-QUAL-W2 can be viewed using the 

credible datasets once the nutrient module in GSSHA is fully functional. Modelers must 

select the parameter that is under investigation to be modeled by CE-QUAL-W2 and 
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enable constituent output time series. When reading the CE-QUAL-W2 solution in 

WMS, modelers must select the desired parameter, from the list of parameters, to be read. 

If a parameter is not modeled by CE-QUAL-W2, or if the modeler does not select the 

right output file, WMS would generate a warning message that the desired parameter is 

not read. However, by default, WMS will generate a number of temperature datasets 

equivalent to the number of valid output files in valid run folders; Run_001, Run_002, 

…etc. 

Parameters in CE-QUAL-W2 could also be handled stochastically using a similar 

methodology done with GSSHA stochastics. The stochastic dialog would have a list of 

the key parameters and modelers would input a negative value in this dialog that is used 

where the parameter value is needed in CE-QUAL-W2. In the current setup, modelers 

must use the same number of runs in CE-QUAL-W2 as for GSSHA.   

4.2.6 Similar Model Linkage 

The linkage process outlined above can be utilized between other models. To do 

so, the general guidelines used in this research can be summarized as follows: 

A. Dimensionality: it is not necessary that the linked models have the same 

dimension. For instance, a 1-dimensional model could be linked to a 2-

dimensional model. However, the linkage must be designed in such a way that 

input/output exchange is made to preserve information and does not result in 

major loss of accuracy of model representation/input data. Assumptions made 

must not degrade the available input data quality. 

B. Spatial domain: in a similar fashion, it is not necessary for the linked models to 

have the same dimension on a spatial domain. As an example, this research links 
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GSSHA, a horizontal 2-dimensinoal model to CE-QUAL-W2, a vertical 2-

dimensional model (1-dimensional on a horizontal scale).  

C. Temporal domain: Two factors must be addressed as far as the temporal domain 

is concerned.  

� Time step: the linked models do not need to have the same time step so long 

as interpolated results are acceptable. However, in interactive bi-directional 

linkage, using the same time step may be the best way for the linkage.  

� Total duration: in a bi-directional model linkage, the total duration for linked 

models, generally, need to be the same. Otherwise, and this research as an 

example, run durations in the linked models do not need to be the same. 

Moreover, the “feeding” model run duration can either be longer or shorter 

that the run duration of the “fed” model. However, it is recommended that the 

run duration of the feeding model, if applicable, be shorter, or at most equal 

to, the run duration of the “fed” model. That way, the “fed” model captures all 

the input from its counterpart. 

D. Statistical domain: this is an optional feature in the linkage process. Stochastic 

approach provide a means for addressing uncertainty in the modeling process and 

in general, helps overcome the inherent variability in the values of model input 

parameters and in the modeling process itself. 

E. Bi-directional linkage: in this research, the two models do not require dynamic 

linkage where input/output are exchanged back and forth between them. 

However, in other cases, this might be the best way to link models.  
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With these guidelines in mind, and as applicable, other models may be linked in 

an automated fashion to build integrated temporal and spatial modeling frameworks. 

Considerable research effort is yet to be performed to make this linkage process not 

model-specific. However, some parts of the linkage process may need minimal efforts to 

customize it. As an example, the random generation of model input parameters following 

a pre-set statistical distribution only need the determination of which parameter for the 

linked models that may be modeled stochastically. In this case, the current research and 

the developed tools may be utilized for other models.  

4.3 Case Studies Results 

This section will highlight the application of the developed framework on two 

case studies; Lake Zapotlan, Mexico and Eau Galle Reservoir, Wisconsin. Each of the 

case studies represents a unique set of conditions and was used to test the tools and 

functionalities developed in this research. It is beyond the scope of this research to 

calibrate these models. This research focused on testing the reliability of both models 

from a stochastic linkage perspective. This process is not intended to replace calibration 

but rather, provide powerful prediction to one that already is. 

As indicated in the previous chapter, the framework developed in this research 

requires three hypothetical layers: 

1. Drainage layer which involves WMS drainage coverage with a delineated 

watershed along with elevation and other supporting data. 

2. GSSHA layer which has a GSSHA grid for the delineated watershed along 

with a running GSSHA model for the whole watershed. 
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3. CE-QUAL-W2 layer which has WMS branch and segment coverages and a 

running CE-QUAL-W2 model for the water body(ies), of interest, in the 

watershed. 

4.3.1 Lake Zapotlan  

Lake Zapotlan closed basin is located in the southern part of Jalisco State, Mexico 

bounded by 19
o
 34’ & 19

o
 53’ North and 103

o
 24’ & 103

o
 38’ West. It is a relatively 

shallow endorheic lake with average depth of about 4-6 meters (Jimenez, et al., 2006) 

(Figure  4-4). A GSSHA model was developed for the lake and its watershed (Gautirrez, 

2007). Due to lack of data, the model only examined two processes, i.e., overland flow 

and infiltration (using Green and Ampt). The grid cell size used was 267 meter (Figure 

 4-5). The total number of rows was 127 and number of columns was 90. The duration of 

the simulation time was 500 minutes with a computational time step of 10 seconds. 

 

Figure  4-4: Lake Zapotlan, Mexico. 
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determine what grid cell size was optimum for the run time (

model was optimized by varying the grid cell size, computational time step, type of

processes involved, and some of the output cards, some of which are “printing” cards that 

take running time to print results to grids 

Figure 

For optimization purposes, the GSSHA model was modified and run for seven 

additional grid cell sizes; i.e. 350, 400, 450, 500, 1000, 2000 and 4000 meter. Each of 

these was run multiple times to investigate the effect of t

successful run time GSSHA takes. Results of these runs are illustrated in 

Since it is beyond the objectives of this research to 

this section focused on finding a “good

119 

Because the GSSHA model was planned to run multiple times, it was important to 

determine what grid cell size was optimum for the run time (Figure  4-

model was optimized by varying the grid cell size, computational time step, type of

processes involved, and some of the output cards, some of which are “printing” cards that 

take running time to print results to grids (Downer, et al., 2006). 

 

 

Figure  4-5: Lake Zapotlan Watershed GSSHA Model. 

For optimization purposes, the GSSHA model was modified and run for seven 

additional grid cell sizes; i.e. 350, 400, 450, 500, 1000, 2000 and 4000 meter. Each of 

these was run multiple times to investigate the effect of the time step on the total 

successful run time GSSHA takes. Results of these runs are illustrated in 

Since it is beyond the objectives of this research to calibrate/validate a GSSHA model, 

this section focused on finding a “good-enough” grid cell size to test the linkage between 

Because the GSSHA model was planned to run multiple times, it was important to 

-6). The GSSHA 

model was optimized by varying the grid cell size, computational time step, type of 

processes involved, and some of the output cards, some of which are “printing” cards that 

For optimization purposes, the GSSHA model was modified and run for seven 

additional grid cell sizes; i.e. 350, 400, 450, 500, 1000, 2000 and 4000 meter. Each of 

he time step on the total 

successful run time GSSHA takes. Results of these runs are illustrated in Figure  4-6. 

calibrate/validate a GSSHA model, 

enough” grid cell size to test the linkage between 
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GSSHA and CE-QUAL-W2. The GSSHA model was finally set to have a grid cell size 

of 500 meter. This model was taken as the main land model and all lake cells (i.e. cells 

overlaid by the lake) are actually ignored in the GSSHA model.  

 

 

Figure  4-6: Run Times for the Lake Zapotlan GSSHA Model. 

It was found that the running time of the 500m model is acceptably appropriate 

for the linking purposes. It must be noted, however, that a uniform cell size of 500 m is 

not optimum at least for this watershed and at least as far as the GSSHA model output is 

concerned. Modelers should always try to maintain a balance between the accuracy 

desired and available computing power. With this size of a watershed and with the 

amounts of stochastic runs that are required, modelers may need to compromise the cells 

size to get a functional stochastic model.  

As we can see in Figure  4-6, the general trend is a decrease in GSSHA model run 

time with increase in the model grid cell size. Also, in general the higher the computation 

time step, the lower the run time for the same total run period. 
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A water quality, hydrodynamic model, with one branch and six segments, was set 

up for Lake Zapotlan using CE-QUAL-W2 (Paz, 2007) (Figure  4-7).  

 

Figure  4-7: Lake Zapotlan CE-QUAL-W2 Segments. 

The CE-QUAL-W2 model (Figure  4-7) was used to generate the segment ID 

index map (Figure  4-8). All the cells that overlay the lake are assigned a number greater 

than zero and all non-lake cells are assigned a zero. A stochastic version of GSSHA was 

run 50 times in the batch mode and accordingly 50 flux files (Figure  4-9) were generated. 

The total run durations and the time steps were different in the GSSHA model 

than in the CE-QUAL-W2 model for lake Zapotlan, with the total duration in the CE-

QUAL-W2 model longer than the total duration in the GSSHA model. This is generally 

acceptable, in terms of the linkage, as opposed to the opposite, total duration of GSSHA 

longer than it is for CE-QUAL-W2, because if the duration of the GSSHA model is 

longer than the duration of the CE-QUAL-W2 model, this would result in a loss of 

available modeling data. It is important to note, however, that the flux files generated by 

GSSHA need to be extended to match the total run duration by CE-QUAL-W2 with zero 
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input. If the flux files generated by GSSHA are left alone, CE-QUAL-W2 model will not 

run because of “incomplete” input files. 

 

 

Figure  4-8: Lake Zapotlan CE-QUAL-W2 Index Map. 

 

As confirmed by the sample flux file Figure  4-9, the CE-QUAL-W2 model of 

Lake Zapotlan has six segments (2 through 7) thus six tributary inflow (QTR) files (          

Figure  4-10) were generated out of each flux file, one for each segment. WMS created 50 

sub-folders, named “Run_0001”, “Run_0002” and so forth. Each of these sub-folders 

contained the copied and modified control file along with the six segment inflow files. 

Other CE-QUAL-W2 input files that are not affected by the stochastic modeling or the 

linkage remain in the parent folder. CE-QUAL-W2 was run stochastically 50 runs for 

each of the sub-folders. The resulting output was read into temperature, as an example, 

datasets (Figure  4-11). 

A WMS gage (Figure  4-12) was placed in one of the longitudinal cells to be able 

to plot a time series displaying the temperature variations among the various time steps of 
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the model (Figure  4-13). This gage can generally represent a monitoring site in a 

reservoir or even representing a withdrawal point in a selective withdrawal tower. 

 

 

Figure  4-9: Sample Lake Zapotlan Flux File. 

 

 

          Figure  4-10: Sample Lake Zapotlan Flux File Broken Down to Segment 2. 
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Figure  4-13 shows 3 lines representing the mean, lower and upper bounds of a 

95% credible interval of the temperature time series at the specified location. If desired, 

modelers can still utilize the “one line” time series by ignoring the upper and lower 

bounds of the credible interval. However, the credible interval might aid water resources 

managers in the decision making process.  

As indicated earlier, the higher the credibility, the wider the range between the 

lower and upper bounds. This can be viewed as follows: 

� Credibility level of 50% (Figure  4-14). 

�  User-defined credibility level of 77%  (Figure  4-15) 

� Credibility level of 99% (Figure  4-16). 

This case study shows the implementation of the developed tools on a closed 

basin. The second test case, Eau Galle reservoir is different as seen in the following 

section. Following are some of the differences between the two test cases; Lake Zapotlan 

and Eau Galle Reservoir: 

� Lake Zapotlan watershed is a closed basin while the Eau Galle watershed is a 

sub-watershed of the Chippewa River; i.e. a tributary of the Mississippi river.  

� In Lake Zapotlan model, there is no stream input where as in Eau Galle 

Reservoir; input from Eau Galle River is accounted for. 

� In Lake Zapotlan model, there is no infiltration process taking place, whereas 

Eau Galle model accounted for the infiltration process.   

� Eau Galle watershed has cascaded reservoirs. 
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Figure  4-11: Temperature Grids for Lake Zapotlan. 

 

Figure  4-12: Location of Monitoring Point (WMS Gage). 

  

Figure  4-13: Stochastic Time Series Plot at the Monitoring Point – 95% CI. 
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Figure  4-14: Stochastic Time Series Plot at the Monitoring Point – 50% CI. 

 

Figure  4-15: Stochastic Time Series Plot at the Monitoring Point – 77% CI. 

 

Figure  4-16: Stochastic Time Series Plot at the Monitoring Point – 99% CI. 

14.60

14.80

15.00

15.20

15.40

15.60

15.80

16.00

0.00 6.00 12.00 18.00 24.00 30.00 36.00 42.00 48.00

T
e
m

p
 (

o
C

)

Time (hr)

LB_50 Mean_50 UB_50

14.60

14.80

15.00

15.20

15.40

15.60

15.80

16.00

0.00 6.00 12.00 18.00 24.00 30.00 36.00 42.00 48.00

T
e

m
p

 (
o

C
)

Time (hr)

LB_77 Mean_77 UB_77

14.60

14.80

15.00

15.20

15.40

15.60

15.80

16.00

16.20

0.00 6.00 12.00 18.00 24.00 30.00 36.00 42.00 48.00

T
e
m

p
 (
o

C
)

Time (hr)

LB_99 Mean_99 UB_99



www.manaraa.com

 

127 

4.3.2 Eau Galle Reservoir 

Eau Galle Reservoir (Figure  4-17) is a 150-acre impoundment located just north 

of Spring Valley, Wisconsin and 50 miles east of the Twin Cities and 40 miles west of 

Eau Claire, Wisconsin (US-ACE, 2007). The Eau Galle River is a tributary of the 

Chippewa River in western Wisconsin in the United States. It is about 35 miles long. Via 

the Chippewa River, it is part of the Mississippi River watershed. The reservoir is formed 

by a US-ACE dam located near Spring Valley, Wisconsin. Lake Eau Galle is hyper-

eutrophic, shallow lake with very poor water quality and poor water clarity. As a lake, 

Eau Galle is high in nutrients and can support a large biomass (Donkel, 2002).  

 

 

Figure  4-17: Eau Galle Reservoir Location. 

A GSSHA model was setup for Eau Galle Reservoir Watershed (Figure  4-18). A 

grid cell size of 100 m with a total number of rows of 468 and number of columns of 305 

was used in this model. Total duration was 1000 minutes with a computational time step 
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of 5 seconds. The Green and Ampt method was used for infiltration. Also, diffusive wave 

was used as channel routing for Eau Galle River. No evapotranspiration method was 

simulated in this model. 

A CE-QUAL-W2 model was setup for Eau Galle Reservoir (Figure  4-19). One 

branch and seven segments were used to simulate the reservoir. Input to the reservoir in 

this model comes from the grid cells in addition to the inflow coming through the river. 

Similar to Lake Zapotlan, the CE-QUAL-W2 model for Eau Galle Reservoir was used to 

generate the segment ID index map. GSSHA was run stochastically for 50 runs. 

To investigate the various aspects of the stochastically linked GSSHA to CE-

QUAL-W2, the following runs were performed: 

� Deterministic run: This represented a single GSSHA run linked to a single 

CE-QUAL-W2 run. The GSSHA model start date was identical to CE-QUAL-

W2 model start date. However, the duration of the GSSHA model was 

considerably less the duration of the CE-QUAL-W2 model (Table  4–3). This 

is considered the base deterministic model (Figure  4-22).  

� Base stochastic run: This represents the 50 stochastic GSSHA runs that were 

de-aggregated to re-build 50 CE-QUAL-W2 runs. The output from these runs 

shows variations (Figure  4-23). Similar to the base deterministic model, the 

GSSHA model start Julian date coincides with the CE-QUAL-W2 model start 

Julian date on all 50 runs. This is considered the base stochastic model. 
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Figure  4-18: Eau Galle Reservoir Watershed. 

 

Figure  4-19: Eau Galle Reservoir CE-QUAL-W2 Model. 

 

Figure  4-20: Segment ID Index Map for Eau Galle Reservoir. 
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Table  4–3: Models Temporal Linkage. 

Model 
Start Julian day Model Duration (days) 

GSSHA CE-QUAL-W2 GSSHA CE-QUAL-W2 

Base Deterministic 1 1 1 400 

Base Stochastic 1 1 1 731 

Delayed Input 381 1 1 731 

Stochastic Temperature 1 1 1 731 

 

 

� Delayed stochastic run: This is identical to the base stochastic model with 

GSSHA input delayed to Julian date 381 (Table  4–3). In this model, the first 

380 days have essentially the same input and therefore, the credible interval 

width is zero up until the stochastic GSSHA input comes into effect (Figure 

 4-24).   

� Stochastic temperature input run: This is identical to the base stochastic model 

with the tributary temperature being modeled stochastically. The tributary 

input temperatures are set to vary following a Normal distribution PDF (Figure 

 4-25). 

For all of these runs, a time series plot of the temperatures was developed for 

eight locations along the profile of Eau Galle Reservoir (Figure  4-21). Figure  4-22, 

Figure  4-23,  Figure  4-24, Figure  4-25 show time series plots for three gages out of the 

eight within the profile. The top time series is for the gage in segment 3 and layer 2. The 

middle time series is for the gage in segment 7 and layer 7. The lower time series is for 

segment 8 and layer 9. 

The location of gages is selected to capture a comprehensive and comparative 

picture of output across the surface and depth of the profile. As we can see from Figure 

 4-21, gage S7L7 is located in segment 7 and layer 7. It can be seen that segment 8; i.e. 
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the most downstream segment in the reservoir, has 3 gages. Two gages are located at the 

top surface in segments 3 and 8.  Three gages are located at the lower layer of the

reservoir in segments 4, 6 and 8 while three other gages are located in the middle of the 

profile in segments 4, 7 and 8.

Figure  4-21

The temperature time series 

intervals for the last three runs outlined above; i.e. base stochastic, delayed and stochastic 

temperature. Figure  4-26

segment 6 and layer 6 (S6L6) for the base stochastic run. Similarly, 

Figure  4-28 show credible interval width for the same gage 

stochastic temperature runs, respectively.
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the most downstream segment in the reservoir, has 3 gages. Two gages are located at the 

top surface in segments 3 and 8.  Three gages are located at the lower layer of the

reservoir in segments 4, 6 and 8 while three other gages are located in the middle of the 

profile in segments 4, 7 and 8. 

 

21: Eau Galle Reservoir Grid and Gage Locations 

The temperature time series were analyzed to determine the width of the credible 

intervals for the last three runs outlined above; i.e. base stochastic, delayed and stochastic 

26 shows the credible intervals width for the gage located in 

segment 6 and layer 6 (S6L6) for the base stochastic run. Similarly, 

credible interval width for the same gage for the delayed runs and the 

stochastic temperature runs, respectively. 

the most downstream segment in the reservoir, has 3 gages. Two gages are located at the 

top surface in segments 3 and 8.  Three gages are located at the lower layer of the 

reservoir in segments 4, 6 and 8 while three other gages are located in the middle of the 

 

 

analyzed to determine the width of the credible 

intervals for the last three runs outlined above; i.e. base stochastic, delayed and stochastic 

shows the credible intervals width for the gage located in 

segment 6 and layer 6 (S6L6) for the base stochastic run. Similarly, Figure  4-27 and 

for the delayed runs and the 
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Figure  4-22: Eau Galle Reservoir Temperature Time Series – Deterministic. 
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Figure  4-23: Eau Galle Reservoir Temperature Time Series – Base Stochastic. 
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Figure  4-24: Eau Galle Reservoir Temperature Time Series – Delayed. 
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Figure  4-25: Eau Galle Reservoir Temperature Time Series – Stochastic Temp. 



www.manaraa.com

 

136 

Figure  4-22, Figure  4-23, Figure  4-24 and Figure  4-25 indicate that surface gages 

experienced minimum temperature fluctuations and that gages closer to the reservoir 

bottom showed small fluctuations whereas the mid-depth gages showed maximum 

fluctuations. Surface layers in the water body generally experience direct atmospheric 

effects that play a large role in determining water surface temperature. Also, bathymetric 

layers have direct contact with the reservoir soil beds making them more susceptible to 

temperature changes attenuation. 

Temperature time series plots for the S8L9 gage seem to be the “flatter” plot of all 

eight gages. This suggests that the deeper the reservoir gets, the less variation there is in 

water temperature across seasons. It can be seen from the deterministic run (Figure  4-22) 

that the model duration is half the model duration of the three other stochastic runs. The 

deterministic run is done as a reference. 

As seen in Figure  4-24, the delayed run values for various credible intervals are 

identical up until GSSHA input time step where we start to see some variations, and 

accordingly, interval width. Relatively speaking, these widths are seen 380 days earlier in 

the base stochastic run (Figure  4-23). In comparing the base stochastic run (Figure  4-23) 

to the stochastic temperature run (Figure  4-25), there is no major difference noticed.  

Figure  4-26 shows that the effect of the stochastic input on Julian Day 1 

(1/1/2006), is propagated in the entire duration of the model. It is noticed that the credible 

interval width is relatively high in summer months. It is also noticed that the credible 

interval widths approaches zero around March and November. As indicated earlier, a 

99% credible interval is expected to be wider than a 95% interval and a 95% interval is 

expected to be wider than a 70% interval. This is evident in Figure  4-26. 
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Figure  4-26: Credible Interval Widths for S6L6 – Base Stochastic.  

 

Figure  4-27: Credible Interval Widths for S6L6 – Delayed Stochastic.  

 

Figure  4-28: Credible Interval Widths for S6L6 – Stochastic Temperature. 
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Figure  4-27 indicates that prior to the stochastic input on Julian Day 381; i.e. 15
th

 

January 2007, widths of the three credible intervals is zero which basically means that the 

values are identical for all the time steps up until Julian Day 381. Minor changes in the 

interval widths are seen until around beginning of February 2007 before the widths start 

to approach zero again around beginning of March. Interval widths picks up again for the 

summer months before the winter decline around November. Same base patterns noticed 

in Figure  4-26 are still noticed in Figure  4-27. 

Figure  4-28 is almost identical to Figure  4-26 and it follows the general pattern 

with minor local changes. Three paired t-tests, with null hypothesis of zero difference, 

were done to statistically examine if both runs are identical (Table  4-4). A paired t-test is 

used to compare each time step, on both runs, individually testing for a zero difference. 

Additionally, three paired regression analyses are done for each of the three credible 

intervals. The base stochastic 70% credible interval width was used as an explanatory 

variable where the stochastic temperature run 70% interval width was used as a response 

variable in the regression analysis. Similarly, the 95% and 99% credible interval widths 

were analyzed. 

As seen in Table  4-4, the paired t-test results indicate p-Values of 0.03, 0.08 and 

0.06 for the 70%, 955 and 99% credible intervals respectively. This suggests that there is 

no evidence to support rejecting the null hypothesis (base stochastic = stochastic 

temperature) on all three intervals. Moreover, the regression analysis indicated that there 

is strong evidence (p-Value < 0.001) that the base stochastic run can explain the 

stochastic temperature and that both are close to identical (regression coefficient @ 1.0)  
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Table  4-4: Comparison between Base Stochastic and Stochastic Temperature. 

Interval Parameter Base Stochastic Stochastic Temperature 

70% 

Mean Width 0.05 0.05 

Max Width 0.13 0.13 

p-Value: t-test 0.03 

p-Value: regression <0.001 

Regression coefficient  0.999 

95% 

Mean Width 0.10 0.10 

Max Width 0.25 0.25 

p-Value: t-test 0.08 

p-Value: regression <0.001 

Regression coefficient 0.996 

99% 

Mean Width 0.13 0.13 

Max Width 0.33 0.33 

p-Value: t-test 0.06 

p-Value: regression <0.001 

Regression coefficient 0.997 

 

The above three figures, Figure  4-26, Figure  4-27, Figure  4-28 indicate that 

credible interval widths approach zero around two particular dates; i.e. mid march and 

mid October. To explain that, CE-QUAL-W2 input data are plotted against time in Figure 

 4-29 and Figure  4-30. 

Figure  4-29 and Figure  4-30 indicate that there is a relatively higher difference 

between inflow and withdrawals combined with relatively, at least locally, higher 

temperature. This indicates that the proportional inflow to the reservoir is not of a 

stochastic nature. This may explain, at least partly, that stochastic input seems to have 

less effect (interval widths close to zero) around mid October. Following that, are winter 

months where evapotranspiration is reportedly at lower annual levels which may explain 

why stochastic input starts to have an effect on the model output. For mid March, the 

inflow seems to reach a max, and similar to October, this may explain the less effect of 

stochastic input on the model. 
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Figure  4-29: Eau Galle Reservoir Meteorological Input. 

 

 

Figure  4-30: Eau Galle Reservoir Inflow and Withdrawal. 

As far as the credible intervals are concerned, a repetitive pattern is seen across 

the three stochastic runs. The basic characteristics of this pattern are listed as follows: 

� Wider credible interval in summer months (northern hemisphere).  

� Credible interval widths approach zero around mid March and mid October. 
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� The effect of stochastic input on interval widths peaks decrease annually on 

the same season. Summer peaks in the second year is less in the first year. 

Water surface elevations have also been manually examined. To investigate the 

stochastic effect on water surface elevations, CE-QUAL-W2 output for segment 6 in the 

delayed input model was examined (Figure  4-31). Four runs; namely runs, 1, 2, 6 and 13 

are considered. Water depth is considered an indicator of water surface elevation, since 

minimal changes in the reservoir bed morphology are expected. 

  

 

Figure  4-31: Water Depth for Stochastic Runs 1, 2, 6 and 13. 

As seen in Figure  4-31 water depth, and hence water surface elevations for all 

runs are identical up until Julian day 381; i.e. 15
th

 January 2007, when the delayed 

stochastic input from GSSHA gets into effect. Following this input, a change in the water 

depth is noticed. Because most stochastic runs are different, the effect that each run has 

on the depth vary. Run 13 shows the largest gain on water depth (about 1.60 m), while 

run 6 shows a slight decrease in water depth.  
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The relative fluctuations in water depths are investigated spatially; i.e. along 

different reservoir segments, and temporarily; i.e. along time steps. It is noticed that 

maximum variation in water depth in the reservoir is about 5% which is considerably 

higher, at least relatively, than the 2% maximum fluctuation in water temperature. 

4.3.3 Linkage Findings  

In the overall process, it is found that the most time consuming part of the linking 

is the multiple runs performed by CE-QUAL-W2. Run time varies by the complexity of 

the model. The most time consuming efforts in the linkage process is running the 

stochastic version of both GSSHA and CE-QUAL-W2. Pre-processing the linkage, de-

aggregating GSSHA output and building CE-QUAL-W2 input takes almost negligible 

time compared to model runs. As indicated in Figure  4-6, run times can vary significantly 

for the same model. Varying time steps, total duration of the run and geometric 

characteristics of the model are among the important factors. A model that runs in less 

than a minute may take considerably longer time to run with different settings, such as a 

shorter time step, or a smaller grid cell or additional modeled processes.  

The number of stochastic variables is limited to 9 variables for the following 

reasons. 

� A certain limitation in the number of stochastic parameters has to be 

considered for computational purpose. 

� The parameter and value files are harder to manage with more than 9 

parameters. 

� It is found that 3 - 6 stochastic parameters is a typical number of parameters 

GSSHA is sensitive for. Any additional parameters modeled stochastically 
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will just increase the run time without a relative improvement in the final 

outcome. 

4.4 Comparison with EPA’s BASINS 

The integrated and stochastic water resources modeling framework developed in 

this research is similar in concept to EPA’s BASINS. However, while the approach 

developed in this research provides linkage of the land and water models, the current 

version of EPA’s BASINS (US-EPA, 2007-a) does not support any automatic linkage 

between land and water models. HSPF as a model does not have the same power as an 

integration between a land and a water model. Also the hydrodynamics routines in HSPF 

are not as rigorous and have known calibration issues. 

Another difference is that, BASINS is “manually” stochastic. In a manual 

stochastic modeling, users have to program in custom tools or integrate with stand-alone 

packages to obtain stochastic value to generate multiple runs. This should create a set of 

values for the stochastic runs. These tools can be integrated with statistical packages, e.g. 

@Risk (Palisade, 2007). As seen in Chapter 3 and earlier in this chapter, this research 

provides a ready-to-use set of tools for stochastic modeling.  

Automated integration is not done in BASINS except between HSPF and 

AQUATOX (which models aquatic biota in receiving waters) (US-EPA, 2007-a), 

whereas this research demonstrates how GSSHA and CE-QUAL-W2 are integrated in an 

automated fashion within the same platform; i.e. WMS, used to pre- and post-process 

input and output for both models.   

As far as uncertainty is concerned, some BASINS-based studies use the implicit 

margin of safety (MOS). It is to the opinion of the author of this research that the MOS is 
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not the best option to address uncertainty in water resources modeling. MOS is arbitrarily 

assigned and not based on scientific calculation/theory. Therefore, I think it cannot be 

considered as an extensive way of addressing, or accounting for, uncertainty. 

Overestimation of MOS will lead to unnecessary regulation and/or expenses whereas 

underestimation of it will result in not meeting the desired standards and regulations. This 

research, as an alternative, proposes the outlined framework to address the uncertainty 

using sound statistical techniques that are widely used and accepted in various fields. The 

credible intervals provide a more quantifiable means of addressing the uncertainty.   

In summary, the approach developed in this research allows modelers to 

automatically link two models stochastically and to address uncertainty using quantifiable 

means; i.e. credible intervals. These tools were developed in an effort to bridge the 

research gap in stochastic and integrated water resources modeling and at the same time 

address uncertainty. The developed framework is aimed at helping decision makers in 

taking better decisions with the available information and resources. 
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5 Conclusions and Recommendations 

The methodology developed in this research utilized GSSHA as a land based 

watershed model and CE-QUAL-W2 as a receiving water model. Linking a watershed 

model and a hydrodynamic - water quality model proved to be a comprehensive tool for 

integrated water resources management. This linkage incorporated stochastic analysis to 

address uncertainty for integrated water resources modeling.  

5.1 Integrated Water Resources  

By linking a deterministic GSSHA model to a CE-QUAL-W2 model in this 

research, GSSHA modelers will have a better understanding of the water quality and 

hydrodynamics of water bodies in the watershed because of the robust modeling 

capabilities of CE-QUAL-W2. Similarly, CE-QUAL-W2 modelers will get more 

accurate input and boundary conditions from GSSHA, including point and non-point 

source pollutant loadings. 

Three main options were discussed in this research for linking the land-based 

model to the water-based one. These options are: 

1. Modeling the water body as a GSSHA lake. 

2. Use the new algorithm developed for this research. 

3. Use GSSHA index maps. 



www.manaraa.com

 

146 

For ease of application and consistency with other GSSHA modeling process, the 

GSSHA index map was primarily used in the linkage.  

The developed tools in GSSHA’s interface in WMS enable modelers to write out 

the stochastic files (parameter and value files) which are necessary for a stochastic 

GSSHA run. Modelers can re-load a previously generated value and parameter files into 

an existing GSSHA model. 

As part of this research, the generic version of CE-QUAL-W2 was 

programmatically modified and a new CE-QUAL-W2 executable was generated and is 

available to be run within future versions of WMS (beginning with version 8.1) for a 

deterministic or stochastic run.  

It is recommended that modelers implement the linkage on calibrated parent 

models. Calibrated GSSHA and CE-QUAL-W2 models are important in obtaining the 

best results from the linkage.  

Identical time steps and start time, between GSSHA and CE-QUAL-W2 linked 

models, were not required to be used in both models. Modelers can use different time 

steps to link a GSSHA model to a CE-QUAL-W2 model using the framework developed 

in this research. However, the end time in GSSHA should be set to a maximum of the end 

time in CE-QUAL-W2. The CE-QUAL-W2 model will not capture any GSSHA output 

beyond the end time defined in the CE-QUAL-W2 control file unless modelers manually 

modify the control file accordingly. 

The size of both models, i.e. GSSHA and CE-QUAL-W2, in terms of the grid size 

is typically determined by multiple aspects for both models. However, as far as linkage is 

concerned, I have found that any size of both models would, theoretically, work. As 
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expected, finer models took longer time to run as opposed to coarser models; i.e. larger 

grid sizes and/or longer time steps. As an example, GSSHA grid cell size variations will 

not adversely affect the linkage in and of itself. In fact a larger grid cell size may be 

better (faster) as far as the linkage is concerned. However, a coarser resolution may not 

be preferred for a GSSHA model in some cases. It is essential that the modeler maintain a 

balance between the level of accuracy needed, the available computing resources, the 

details available and accuracy desired. Although not tested as part of this research, the 

author believes that network or super-computing might be considered for faster 

processing. 

The tools developed in this research are intended to reduce the time taken for a 

complete stochastically linked run. However, for practical purposes, 1-D modeling is 

obviously less time consuming. 2-D modeling, especially integrated models are useful in 

detailed studies that require more accurate results and better decisions. 

5.2 Stochastic Approach 

The stochastic GSSHA implementation developed in this research will give 

modelers more information than a deterministic model. Modelers can investigate 

stochastic outputs to help in calibration and sensitivity analysis efforts. 

Similar to stochastic GSSHA, a stochastically-run CE-QUAL-W2 model provides 

new insights to modelers and decision makers. This research is thought to enhance 

reservoir operations and selective withdrawal management schemes by providing a tool 

to evaluate the uncertainty in model output and show the effect of various results on 

management decision. These stochastically linked models can determine which 

parameters the model is more sensitive to. In the test cases, for instance, stochastic 
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temperature was not very important at least relatively (compared to other water quantity 

related parameters). 

Beta distribution was added to the distributions types for stochastic value 

generation in WMS. Beta-generated values were considerably different, for the case 

studies and distribution settings used, than the Normal and log-normal distribution-

generated and the Log-Normal distribution-generated raw values. There was no strong 

reason leading to believe that GSSHA flux files resulting from Beta distribution were 

different from those resulting from normally distributed values. However, it must be 

noted that this conclusion is unique for the test cases used in this research and for Beta 

shape factors of 2 and 7. Different values for Beta shape factors may produce different 

results. Different combinations of these factors give Beta distribution the ability to 

“approximate” a wide selection of parameter population distribution and hence be a 

commonly used distribution type. 

Without relevant stochastic simulation of model input parameters, uncertainty 

would be poorly estimated and depend on subjective opinions. Instead of using implicit 

techniques to address uncertainty (for example: MOS), it is recommended that modelers 

consider stochastic modeling as appropriate. A robust confidence level estimate cannot be 

quantified without an appropriate stochastic simulation.  

Time series plots are usually generated for a “point of interest” which is a cell in 

the CE-QUAL-W2 model identified by a segment and a layer. A deterministic line may 

over-, under-estimate values. The tools developed in this research allow modelers and 

decision makers to address uncertainty in the overall modeling process. This is 

accomplished by providing modelers with the option to view output with “the single line” 
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approach or adding a range of values. The “single line” result of this research is a better 

representation of the mean values, as opposed to the deterministic line. The other option 

that this research provides is the credible interval. Modelers will be able to view output 

with a range of potential values associated with a credibility level.    

The credible interval time series plot indicate a representative value at each time 

step along with an “envelope” encompassing a range of possible values. As an example, a 

credible interval time series, signified by 95% confidence level, were used to infer that 

there was a 95% chance that temperature would be between the lower and upper bounds 

of the interval. Credible interval time series plots can also be used to infer that the 

parameter value would exceed a specific water quality standard 95%, for instance, of the 

time. The time series plots, in that sense, are useful in evaluating the water quality, or 

quantity, at the outlet structure of reservoir or a dam. 

The developed approach enables modelers to re-plot the time series with different 

level of confidence. Results shown in Chapter 4, confirmed that, the more confidence we 

seek, the wider the range and vice versa. A narrower credible interval came at the 

expense of less confidence. As an example, the 77% credible interval was narrower than 

the 95% one, but we were less confident in the 77% credible interval. 

I recommend using at least 25 model runs to get reliable credible interval. 

However, this should always be looked at on a case by case basis. The modeler should 

always try to maintain a balance between the number of runs needed for a reliable 

inference, the computing resources and time available. The larger the number of 

simulations used, the less effect on statistical assumptions violations, especially the 

normality assumption.  
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Prior to modelers implementing this approach, it is recommended to: 

� Run a 5-10 simulations prototype model to get an idea of  the width of the 

interval. This prototype can be used to estimate the number of runs that are 

needed for a user-defined interval width.  

� Perform parameter importance analysis to determine which parameters to 

model stochastically. With the objective of finding the most critical parameter 

in any modeling process, sensitivity analysis efforts should be replaced by 

parameter importance. A model sensitive to a specific parameter does not 

necessarily mean that this parameter should be looked at more closely for all 

cases.  

� Understand the assumptions and limitations of the linkage. Neither the linkage 

nor the models are suitable for all conditions and cases. Modelers must 

confirm that the limitations of this approach do not violate the assumptions 

made in the modeled system. A full detailed list of the assumptions and 

limitations of this framework are outlined in Chapter 4. 

Stochastic tools developed in this research will help modelers in case of lack of 

field data. Modelers can simulate parameter values using Monte Carlo Simulation with 

three sampling methods to choose from in coordination with four types of statistical 

distributions. Using prior knowledge or depending on previous research or using 

educated engineering judgment help determine the necessary distribution settings; i.e. 

minimum, maximum, standard deviation of the missing data. 
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5.3 Case Studies 

The developed integrated and stochastic water resources framework was tested on 

Lake Zapotlan and Eau Galle Reservoir watersheds.  The previously generated, 

deterministic, GSSHA models were used to build stochastic models for the same test 

cases. GSSHA output is used to generate input for the previously generated CE-QUAL-

W2 model for the receiving water body. The results showed the following: 

�  Reservoir water depth shows more tangible fluctuations than water temperatures. 

This finding was expected since all parameters modeled stochastically were water 

quantity related. The spatio-temporal water depths fluctuations amounting to 5% 

which is more than double the spatio-temporal temperature which amounts to 

about 2%.  

Fluctuations in temperature varied greatly by location in the reservoir profile. 

Generally, the top surface gages showed the lowest fluctuations in temperature. 

Locations closer to reservoir bottom experienced a little more fluctuation. Mid-

depth gages showed the maximum fluctuations in temperature. This stochastic 

profile analysis is helpful in a reservoir selective withdrawal scheme where a 

withdrawal column is installed and water is abstracted from the reservoir at a 

certain depth. This depth may vary across seasons satisfying different criteria. 

Most selective withdrawal schemes consider water quality parameters other than 

temperature as well. Also, water surface elevations showed more changes within 

the stochastic run rather than temperature. 

� Stochastically varying inflow water temperature along with the stochastic GSSHA 

output does not have a significant effect on the overall output for a temperature 
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time series. A “base” stochastic run, with deterministic water temperature input, 

had almost the same output as the same model but with stochastic water 

temperature input. 

� Using different statistical distributions for input parameters, had led to little, if 

any, effect on the final stochastic output. Even though, previous research had 

indicated that selection of statistical distribution is critical, in the two case studies 

used for this research, using three different statistical distributions did not prove 

to pose any effect of the results. 

� Using an appropriate statistical distribution in addition to prior knowledge of the 

range of expected values for some hydro-geological parameters may, in some 

cases, help in the modeling process in case of the lack of reliably measured 

parameter values.  

As indicated in these test cases, the developed tools can be used to determine 

parameter importance and model sensitivity. Modelers can utilize the developed tools in 

initial model reconnaissance, where the main goal is to determine which parameters; the 

model is more sensitive to. Accordingly, modelers can determine important parameters to 

invest more time and effort in field measurement.     

5.4 Potential Future Research 

This research effort tried to bridge part of the gap in the integrated and stochastic 

water resources arena. Nevertheless, and like any other research, few additional research 

areas came out as a result, that needed more investigation. These investigations were 
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beyond the original scope and objectives outlined for this framework. Future research 

efforts related to this research may involve the following: 

� Include water quality loadings from GSSHA as soon as GSSHA’s nutrient 

module is in full function. This will generate stochastic constituent time series 

input files (*_ctr.npt), for CE-QUAL-W2, in a similar fashion to the inflows 

outlined in this research (*_qtr.npt). 

� Research the need to generate grids and maps of probability of exceedance to 

a certain water quality threshold. In a similar fashion to credible interval time 

series plots, grids can be generated for a water body that indicate areas that 

exceed water quality standards at a given confidence level.  

� Update the linkage process for a 3-D CE-QUAL-W2 since the model is 

anticipated to undergo a 3-D update in the future. The linkage should work 

essentially the same as long as the lateral variations are averaged. 

� Incorporate stochastic parameters in CE-QUAL-W2. 

� Test the developed integrated and stochastic approach on a number of other 

watersheds. Each watershed is hydro-geo-morphologically unique and other 

applications will determine modifications and updates, if applicable, that are 

necessary. Also, examine if the choice of statistical distributions is critical for 

these watersheds. 

� Investigate distribution of the GSSHA output through the various layers of the 

neighboring CE-QUAL-W2 segments. 

� Research is necessary to determine how to use distributions efficiently. A 

“best” distribution to represent parameter populations is to be investigated.  
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� Use the WMS Model Wrapper for the CE-QUAL-W2 multiple runs. 

Currently, the CE-QUAL-W2 runs stochastically without modeler 

intervention, but in a DOS window that closes after successful termination of 

each individual run.  

� Investigate linking other models using the same integrating concept. 

Depending on the models linked, the spatial and temporal domains must be set 

in accordance. The output of the watershed model has to be processed to 

generate an input for the receiving water body model. The models may not 

share the same time steps and the start/end time of the modeling period. 

Indeed, integrated water resources modeling helps water resources professionals 

in the decision making process especially when uncertainty is appropriately addressed. It 

is recommended that addressing uncertainty and accounting for parameter importance 

and variations in parameter values be researched more. Implicit approaches in addressing 

uncertainty should be used in minimum occasions and where quick answers are 

requested. Stochastic analysis in hydrologic, hydraulic and water quality fields is yet to 

be explored.                                                                                                                                                                                                           
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Appendix A GSSHA/CE-QUAL-W2 Linkage in Watershed                  

Modeling System (WMS): A Primer 

This document highlights on the linkage between GSSHA and CE-QUAL-W2. It 

will walk you through the linkage process using Eau Galle Reservoir dataset. 

In order to establish a stochastic integrated link between the two models, a model, 

each, for the area need to be already set and running. Modelers are highly encouraged to 

set and calibrate both models individually and deterministically before attempting to link 

them stochastically. 

Before starting to work on this primer, you should have the following fully 

functional deterministic models for the watershed (Figure A-1): 

• Eau Galle Reservoir GSSHA model (EauGalle_GS). 

• Eau Galle Reservoir CE-QUAL-W2 model (EauGalle_W2). 

Now, we will proceed with the primer.  

A. Initial Setup 

Let us make sure that WMS is ready to build the link between GSSHA and CE-

QUAL-W2. The CE-QUAL-W2 model needs to open first. 

1. Open the WMS project for the CE-QUAL-W2 model (EauGalle_W2.wpr) by 

selecting “File | Open” from the main WMS menu. When prompted to locate the 
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control and bathymetry files, go ahead and select “Ok” from the respective 

dialogs to browse for these files (Figure A-2Figure A-1), (Figure A-3). 

 

 

Figure A-1: Eau Galle Watershed. 

2. Activate the two dimensional Grid Module.  

 

 

Figure A-2: Eau Galle Reservoir CE-QUAL-W2 Segment IDs. 

3. Open the GSSHA project by selecting “Open Project” from the “GSSHA” menu. 

This should open the existing GSSHA model (Figure A-4). 

N.B.: Make sure that GSSHA’s project full file name including the path and the 

extension is not more than 80 alpha-numeric characters. 
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4. Browse and select the file EauGalle_GS.prj to open.  

 

Figure A-3: Eau Galle Branch Coverage. 

B. Establishing the Spatial Link 

When both models are open, the spatial link can be established as follows: 

5. Make sure that you have a valid branch and segment coverages. Segments are 

mapped to branches and that segments are numbered properly (dummy segments, 

ascending segment numbers from upstream to downstream). 

 

 

Figure A-4: Eau Galle Segments over a GSSHA Grid. 
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6. Make sure that the GSSHA model is setup with appropriate cell size. The cell size 

should be small enough to get each segment in the CE-QUAL-W2 model 

represented by AT LEAST one cell. In this case, cell size is 100 m. 

7. Activate the “Map Module”. You should have the “CE-QUAL-W2” menu 

available on the main WMS menu. If not, navigate to “Models” menu and select 

“CE-QUAL-W2”.  

8. Select “GSSHA to CE-QUAL-W2 Link” from the “CE-QUAL-W2” menu. This 

should generate the segment ID index map that is necessary for the spatial 

linkage. 

N.B.: The “GSSHA to CE-QUAL-W2 Link” command (Figure A-5) should be 

undimmed. If not, you will need to re-initialize the model. Check WMS (Nelson, 

2008) tutorial for further details on initializing a CE-QUAL-W2 model. 

 

 

Figure A-5: Link GSSHA to CE-QUAL in WMS. 

9. A message will come up (Figure A-6) indicating that the segment ID index map 

will be generated.  
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10. Navigate to the “Grid Module”. Select “GSSHA | Save Project”. This will bring 

the “Save GSSHA Project File” dialog (Figure A-7) to save the GSSHA project 

with the index map in the specified location. 

 

 

Figure A-6: Segment ID Index Map Confirmation Message. 

 

 

Figure A-7: Save GSSHA Project File Dialog – Index Map Tab. 

As noted in this “Save GSSHA Project File” dialog, and in the “Index Maps” tab, 

the segment ID index map (EauGalleSeg.idx) should be saved to the location indicated.  

N.B.: Note that until the GSSHA project is saved, the segment index map is not saved. 

The spatial link between the two models is established using a GSSHA index map 

of the CE-QUAL-W2 segment IDs. The index map should be generated using the same 

GSSHA grid; i.e. cell size. 
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Your WMS screen should look like (Figure A-8) with the red cells indicating the 

GSSHA model and the other colored ones are for the segment ID index map. 

N.B.: Once the GSSHA project file (Figure A-9) is saved, make sure a new card 

“## GSSHA to W2” is created and added towards the end of the file. 

 

Figure A-8: Eau Galle Reservoir Index Map. 

 

 

Figure A-9: Sample GSSHA Project File. 

C. Stochastics in GSSHA  

Once the spatial link is established, modelers can modify GSSHA parameter 

values and re-setup the model for stochastic runs. As an example to illustrate the process, 
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we will only model two parameters stochastically; i.e. capillary head and hydraulic 

conductivity. 

11. Now, re-activate the “two dimensional Grid Module”. 

12. Select “GSSHA | Sotchastic GSSHA”.  This should bring the “Stochastic GSSHA” 

dialog (Figure A-10). 

 

Figure A-10: Stochastic Dialog. 

13. Click on “Add Parameter” to add capillary head. Select “Capil. Hd.” From the 

“Type” field for this parameter.  

14. Click on “Add Parameter” to add hydraulic conductivity. Select “Hyd. Con.” 

From the “Type” field for this parameter. 

N.B.: If needed, click on “Repopulate Runs” to populate parameter values. This 

command can be used to generate another set of values for the same set of 

parameters. Note that the distribution type, standard deviation, minimum and 

maximum remain the same after repopulating the runs. All what this command does 

is perturb a new set of values from the distribution selected. 
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15. In the “Distribution” field, select “Normal” for both parameters. However, for the 

hydraulic conductivity, click on the check-box “Log” to use a Log-Normal 

distribution for hydraulic conductivity.  

 

 

Figure A-11: Menu Commands of the Linkage. 

16. Select the “Number of Instances” to be 25 instead of 100.  

17. Leave the “Sampling Method” as default; i.e. “Random Sampling”. 

The Latin Hypercube Sampling (LHS) basically subdivides the PDF into sub-

areas and selects only one value for each. A number of instances “a” and a number of 

variables “b” would result in a total number of simulations equal to a
b
. 

18. Click on “Ok” on the “GSSHA/CE-QUAL-W2 Stochastics” dialog. 

19. Save the GSSHA project file. 
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The index map is saved once the GSSHA project is saved. This is designed so to 

avoid unnecessary used disk space. Modelers typically do not need the index map saved 

until they actually save a GSSHA project. 

N.B.: When a GSSHA project is saved, the parameter and value files are saved. These 

files are used in the stochastic run.  

20. Run a stochastic version of GSSHA. Before you run GSSHA stochastically, make 

sure that a stochastic card is added to the GSSHA project file. 

N.B.: A simulation input file is generated along with the parameter and value files. 

This File allows users to reload the stochastic parameters and their values used in the 

previous simulation. Re-populating the runs or selecting other distribution/settings 

will change these values. However, these changes will not be saved unless the 

GSSHA project is saved. 

D. Generate CE-QUAL-W2 Input 

After a successful GSSHA stochastic run, flux files should have been created 

equal to the number of the simulations/runs specified in the GSSHA stochastic dialog in 

the previous section. The flux files will be labeled with the number of the run preceding 

the file name; e.g. 0027_w2_seg_qin.npt. Notice that the file has an “npt” extension as it 

will be used as “input” to CE-QUAL-W2. All flux files will be generated in the 

“Stochastic Ouptu” folder generated by WMS. 

21. Now, re-activate the “Map module”.  

22. Select “CE-QUAL-W2 | Build Stochastic Input”. (Figure A-11, B) 
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23. Locate the parent folder that you want the run sub-folders to be saved under. 

24. After executing this command, you should notice the following: 

a. Flux files broken down to number of files. 

b. Each flux file is broken down into its own folder named with the run 

number. 

c. CE-QUAL-W2 control file copied and modified to incorporate the 

broken flux files (Figure A-12). 

25. Select “CE-QUAL-W2 | Run Simulation”.  

 

 

Figure A-12: CE-QUAL-W2 Control File with Flux Files. 

26. Select “Stochastic” in the “Run CE-QUAL-W2 Simulation” dialog.  

27. Navigate to the parent folder that contains all the built runs for CE-QUAL-W2. 

(from the previous steps) 

28. When you click “Ok” on the “Run CE-QUAL-W2 Simulation” dialog (Figure 

A-13), you should see the CE-QUAL-W2 runs executed. 
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E. Read CE-QUAL-W2 Solution 

After a successful CE-QUAL-W2 stochastic run, output are saved in the sub-

folders under each run number. WMS is ready to read in the various runs. 

29. Before we start reading in the solutions, a longitudinal profile of the water body 

needs to be generated. This profile displays the segments and layers for each 

branch. 

 

Figure A-13: Read CE-QUAL-W2 Simulation Dialog. 

30. Select “CE-QUAL-W2 | Map->CE-QUAL-W2 Grids”. This should generate a grid 

for the selected branch 

31. Select “CE-QUAL-W2 | Read Solution”. This should bring the “Read Pre-Run 

CE-QUAL-W2 Simulation” dialog.  

 

Figure A-14: Simulated Constituents Warning Message. 

32. Select “Stochastic” from the drop down box on the top left of the dialog. 

33. Navigate to the parent folder than contains all the CE-QUAL-W2 runs. 
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34. After successful reading of the solution, WMS will generate a number of datasets 

equal to the number of simulations. In Addition to those datasets, minimum, 

median and maximum datasets will be generated in the following section. 

F. View CE-QUAL-W2 Results 

To be able to view the stochastic results, a grid must be generated for the branch 

under investigation as indicated in the previous step. If it is not already setup, WMS will 

check and ask you if you want to create it as part of the read solution command. 

The credible intervals and the level of credibility need to be set to determine the 

lower and higher bounds of the time series. 

35. Highlight the grid desired. 

36. Select “Data | Credible Intervals”. This should bring the “Select Datasets” dialog. 

In this dialog, you should be able to see all the created datasets (i.e. runs) created 

for the highlighted grid. 

37. Select all the datasets (Figure A-15) that you want to include in generating the 

credible intervals, by using the SHIFT and CTRL keys. More datasets usually 

indicates higher accuracy and better representation for the credible intervals. 

38. Click “Options” in the “Select Datasets” dialog. This should bring the “Select 

Credible Interval” dialog. 

39. Select “User Defined Credibility (e.g. type 95 for 95%)” and type 77 (Figure 

A-16).  Note that this field will only allow users to enter up to two digits. 

40. Click “Ok” to close the “Select Credible Dialog”.  

41. Click “Ok” to close the “Select Datasets” dialog. 
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Figure A-15: Selected Datasets Dialog – Select Runs to Create Credible Intervals. 

 

 

Figure A-16: Select Credible Interval Dialog. 

42. This should generate three additional datasets in the main highlighted grid. The 

three datasets are the 77% credible interval lower bound (minimum77), upper 

bound (maximum77) and the mean (mean77). 

The interface is ready for the final display of the stochastic time series.  

43. Make sure the “two dimensional Grid Module” is active. 

44. Select the “Gage” from the WMS tool palette. Locate a gage (Figure A-17) where 

necessary (CI_Gage).  
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Figure A-17: Gage Location. 

45. Select the “Select Gage” from the WMS tool palette.  

46. Use the mouse to right-click on the gage.  

47. Select “Plot Selected”. This should bring the “Select Datasets” dialog. 

48. Use the “Shift” key to select the last three created datasets; i.e. Minimum77, 

Mean77 and Maximum77 (Figure A-18). 

49. Click “Ok” on the “Select Datasets” dialog. 

50. This will create the stochastic time series of the dataset at CI_Gage. 

N.B.: Users should label the minimum, maximum and mean datasets as they are 

generated especially if they are creating multiple credible intervals. As indicated in 

Figure A-20, there are multiple datasets labeled by the respective credible interval 

used in creating them. 

51. If you want to generate another time series for the same location (gage), right-

click on the gage again, and select “Plot Selected” (Figure A-19) and select any of 

the runs that are available in the “Select Datasets” dialog (Figure A-20).   
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Figure A-18: Selected Datasets Dialog – Select Credible Interval Datasets. 

 

Figure A-19: Gage Location – Plot Selected Datasets. 

N.B.: Users should notice that reducing the confidence level should always result in a 

narrower range of plausible values. This means that if users require a higher 

credibility, that would come at the expense of the width of range of values. 

52. Additional analysis can be done by repeating steps 35 through 50 to generate 

other credible intervals and generating three additional datasets for each credible 

interval selected to see the effect of the credibility on the interval width.  
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Figure A-20: Select Datasets Dialog. 

The general rule is that, the more confident or credible we want the results to be, 

the wider the range between the lower and upper bounds. The stochastic graph may be 

interpreted that the temperature ranges between the lower and upper bounds for the 

designated credibility level (i.e. 95%) 

N.B.: Users may rename the created datasets. However, it is always advisable to name 

the minimum, mean and maximum according to the credible interval chosen. 

Among various uses, this application can be utilized in: 

• Selective withdrawal analysis for a specific reservoir. 

• Integrated Water resources Management. 

• Addressing the uncertainty involved in the modeling process. 

• Stochastic modeling of water resources/quality. 
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